The role of microRNAs in the development of gastric and duodenal ulcers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The research highlights the fundamental concepts of microRNA, the mechanisms of RNA interference, the importance of microRNA in the development of diseases. Combining the experience of domestic and foreign researchers, the authors identified the main miRNAs involved in the development of gastric and duodenal ulcers. The article also describes the main mechanisms of regulation of the inflammatory process in gastric and duodenal ulcers associated with Helicobacter pylori, the influence of microorganisms on the expression of various microRNA types and the control of the cellular immune response. In addition, the review presents the latest research on methods for diagnosing Helicobacter pylori-associated peptic ulcer based on the determination of circulating microRNAs. The results of an experimental model of treatment of patients infected with Helicobacter pylori with drugs that act on non-coding RNA are presented.

Full Text

Restricted Access

About the authors

Yulia R. Sagadatova

Bashkir State Medical University

Author for correspondence.
ORCID iD: 0000-0002-2922-7087
SPIN-code: 2634-5987
ResearcherId: GXA-0228-2022

Postgrad. Stud., Depart. of Surgical Diseases

Russian Federation, Ufa, Russia

Anvar G. Khasanov

Bashkir State Medical University

ORCID iD: 0000-0001-5870-8894
Scopus Author ID: 7006453675

M.D., D. Sci. (Med.), Prof., Head of Depart., Depart. of Surgical Diseases

Russian Federation, Ufa, Russia

Irina R. Gilyazova

Bashkir State Medical University; Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences

ORCID iD: 0000-0001-9499-5632

Cand. Sci. (Biol.), Assoc. Prof., Senior Research Fellow

Russian Federation, Ufa, Russia; Ufa, Russia

Damir I. Sufiyarov

Bashkir State Medical University

ORCID iD: 0000-0002-9898-6757


Russian Federation, Ufa, Russia

Ildar F. Sufiyarov

Bashkir State Medical University

ORCID iD: 0000-0001-8688-8458
Scopus Author ID: 23053114300

M.D., D. Sci. (Med.), Prof., Depart. of Surgical Diseases

Russian Federation, Ufa, Russia


  1. O'Brien J, Hayder H, Zayed H, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi: 10.3389/fendo.2018.00402.
  2. Borisov DA, Nakhusheva MI, Tanasheva AZ, Balabanov AG. RNA interference therapy based on microRNA. Avitsenna. 2021;(76):4–7. (In Russ.)
  3. Moein S, Durdi Q, Maryam M, Seyed MN, Bahman Y. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol. 2019;234(4):3277–3293. doi: 10.1002/jcp.27173.
  4. Shcherbo SN, Shcherbo DS, Kralin MU. Biomarkers of personalized medicine. Part 5. Non-coding RNAs and microRNA. Meditsinskiy alfavit. 2015;3(11):5–11. (In Russ.)
  5. Abashkin VM, Dmitruk OG, Shcharbin DG. Small non-coding RNA: biological functions and biomedical application. Izvestiya Natsionalnoy akademii nauk Belarusi. Seriya biologicheskikh nauk. 2018;63(2):232–244. (In Russ.) doi: 10.29235/1029-8940-2018-63-2-232-244.
  6. Sarrion I, Milian L, Juan G, Ramon M, Furest I, Carda C, Gimeno JC, Roig MM. Role of circulating miRNAs as biomarkers in idiopathic pulmonary arterial hypertension: possible relevance of miR-23a. Oxid Med Cell Longev. 2015;2015:792846. doi: 10.1155/2015/792846.
  7. Liang Y, Duan L, Xiong J, Zhu W, Liu Q, Wang D, Liu W, Li Z, Wang D. E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix degradation in human chondrocytes. Arthritis Res Ther. 2016; 8(1):105. doi: 10.1186/s13075-016-0997-y.
  8. Andreasen S, Tan Q, Klitmoller Agander T, Steiner P, Bjorndal K, Hogdall E, Larsen SR, Erentaite D, Holkmann Olsen C, Ulhoi BP, Holstein SL, Wessel I, Heegaard S, Homoe P. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles. Mod Pathol. 2018;31(8):1211. doi: 10.1038/s41379-018-0005-y.
  9. Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential. J Cancer Res Clin Oncol. 2021;147(3):637–648. doi: 10.1007/s00432-021-03534-5.
  10. Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC, Naziruddin C. MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells. 2019;8(12):1533. doi: 10.3390/cells8121533.
  11. Ponasenko AV, Tsepokina AV. Posttranscriptional regulation in congenital heart disease: the role of miRNA. Complex issues of cardiovascular diseases. 2019;8(3):85–95. (In Russ.) doi: 10.17802/2306-1278-2019-8-3-85-95.
  12. Danish S, Maha A. Micrornas in development and disease. Physiol Rev. 2011;91;827–887. doi: 10.1152/physrev.00006.2010.
  13. Korableva MA. RNA interference: mechanism and features of the method. Vestnik sovremennykh issledovaniy. 2021;(5-7):23–25. (In Russ.)
  14. Gutbrod MJ, Martienssen RA. Conserved chromosomal functions of RNA interference. Nat Rev Genet. 2020;21(5):311–331. doi: 10.1038/s41576-019-0203-6.
  15. Wang Z, Luo X. MicroRNA interference: Concept and technologies. In: RNAi Technology. CRC Press; 2016. р. 75–98.
  16. Gareev IF, Beylerli OA, Pavlov VN, Izmailov AA, Khusnutdinova EK, Khasanova GM, Gilyazova IR, Khasanova AN, Wang G, Huang H, Pan J, Shao T, Yao H, Wang W, Khasanov DN. The potential role of miRNAs in the pathogenesis of hemorrhagic fever with renal syndrome. Urologiya. 2021;(1):112–119. (In Russ.) doi: 10.18565/urology.2021.1.112-119.
  17. Plotnikova OM, Skoblov MYu. MicroRNA role in hereditary genetic di-seases. Medical Genetics. 2020;19(9):5–17. (In Russ.) doi: 10.25557/2073-7998.2020.09.5-17.
  18. Kholopova AA. MicroRNA: Mechanisms of regulation of gene expression and prospects for use in diagnostics. Byulleten Severnogo gosudarstvennogo meditsinskogo universiteta. 2021;(1):114. (In Russ.)
  19. Kiseleva YaYu, Ptitsin KG, Radko SP, Zgoda VG, Archakov AI. Digital droplet PCR — a prospective technological approach to quantitative profiling of microRNA. Biomeditsinskaya khimiya. 2016;62(4):403–410. (In Russ.) doi: 10.18097/PBMC20166204403.
  20. Nizyaeva NV, Kulikova GV, Shchyogolev AI, Zemskov VM. The role of microRNA in the regulation of organism’s immune responses. Uspekhi sovremennoy biologii. 2016;136(2):115–125. (In Russ.)
  21. Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol. 2016;16(5):279–294. doi: 10.1038/nri.2016.40.
  22. Wu CJ, Lu LF. MicroRNA in immune regulation. In: Yoshimura A, editor. Emerging concepts targeting immune checkpoints in cancer and autoimmunity. Current topics in microbiology and immunology. Vol. 410. Springer, Cham; 2017. р. 249–267. doi: 10.1007/82_2017_65.
  23. Rupaimoole R, Slack FJ. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–222. doi: 10.1038/nrd.2016.246.
  24. Gareev IF, Beylerli OA. Circulating microRNAs as biomarkers: what are perspectives? The russian journal of preventive medicine and public health. 2018;21(6):142–150. (In Russ.) doi: 10.17116/profmed201821061142.
  25. Verenikina EV. Epigenetic markers of ovarian cancer: circula-ting microRNAs. Sovremennyye problemy nauki i obrazovaniya. 2020;(4):157–157. (In Russ.)
  26. Aushev VN. MicroRNA: small molecules of great significance. Clinical oncohematology. Basic research and clinical practice. 2015;8(1):1–12. (In Russ.)
  27. Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478. doi: 10.3389/fgene.2019.00478.
  28. Link A, Kupcinskas J. MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: Current insights and future perspectives. World J Gastroenterol. 2018;24(30):3313. doi: 10.3748/wjg.v24.i30.3313.
  29. Lario S, Ramírez-Lázaro MJ, Aransay AM, Lozano JJ, Montserrat A, Casalots A, Junquera F, Alvarez J, Segura F, Campo R, Calvet M. MicroRNA profiling in duodenal ulcer disease caused by Helicobacter pylori infection in a Western population. Clinical Microbiology and Infection. 2012;18(8):E273–E282. doi: 10.1111/j.1469-0691.2012.03849.x.
  30. Sasaran MO, Meliț LE, Dobru ED. MicroRNA modulation of host immune response and inflammation triggered by Helicobacter pylori. Int J Mol Sci. 2021;22(3):1406. doi: 10.3390/ijms22031406.
  31. Lario S, Ramirez-Lazaro MJ, Brunet-Vega A, Vila-Casadesus M, Aransay AM, Lozano LL, Calvet X. Coding and non-coding co-expression network analysis identifies key modules and driver genes associated with precursor lesions of gastric cancer. Genomics. 2022;114(3):110370. doi: 10.1016/j.ygeno.2022.110370.
  32. Cheng SF, Li L, Wang LM. miRNA-155 and miRNA-146b negatively regulates IL6 in Helicobacter pylori (cagA+) infected gastroduodenal ulcer. Eur Rev Med Pharmacol Sci. 2015;19(4):607–613. PMID: 25753878.
  33. Liu Z, Wang D, Hu Y, Zhou G, Zhu G, Yu Q, Chi Y, Cao Y, Jia C, Zou Q. MicroRNA-146a negatively regulates PTGS2 expression induced by Helicobacter pylori in human gastric epithelial cells. J Gastroenterol. 2013;4(1):86–92. doi: 10.1007/s00535-012-0609-9.
  34. Belaia OF, Volchkova EV, Paevskaya OA, Zuevskaya SN, Yudina YuV, Pak SG. The role of Helicobacter pylori in the process of carcinogenesis by means of dysregulation of mirna expression. Epidemiologiya i infektsionnyye bolezni. 2014;(6):43–47. (In Russ.)
  35. Yang L, Long Y, Li C, Cao L, Gan H, Huang K, Jia Y. Genome-wide analysis of long noncoding RNA profile in human gastric epithelial cell response to Helicobacter pylori. Jpn J Infect Dis. 2015;68(1):63–66. doi: 10.7883/yoken.JJID.2014.149.
  36. Cortes-Marquez AC, Mendoza-Elizalde S, Arenas-Huertero F, Trillo-Tinoco J, Valencia-Mayoral P, Consuelo-Sanchez A, Zarate-Franco J, Dionicio-Avendano AR, Herrera-Esquivel JJ, Recinos-Carrera EG, Colin-Valverde C, Rivera-Gutierrez S, Reyes-Lopez A, Vigueras-Galindo JS, Velazquez-Guadarrama N. Differential expression of miRNA-146a and miRNA-155 in gastritis induced by Helicobacter pylori infection in paediatric patients, adults, and an animal model. BMC Infect Dis. 2018;18(1):1–9. doi: 10.1186/s12879-018-3368-2.
  37. Wan J, Xia L, Xu W, Lu N. Expression and function of miRNA-155 in diseases of the gastrointestinal tract. Int J Mol Sci. 2016;17(5):709. doi: 10.3390/ijms17050709.
  38. Li N, Wang J, Yu W, Dong K, You F, Si B, Tang B, Zhang B, Wang T, Qiao B. MicroRNA-146a inhibits the inflammatory responses induced by interleukin-17A during the infection of Helicobacter pylori. Mol Med Rep. 2019;19(2):1388–1395. doi: 10.3892/mmr.2018.9725.
  39. Stolyar MA, Gorbenko AS, Bakhtina VI, Martynova EV, Moskov VI, Mikhalev MA, Olkhovik TI, Haziyeva AS, Olkhovskiy IA. Investigation of miR-155 level in the blood of patients with chronic lymphocytic leukemia and ph-negative myeloproliferative neoplasms. Klinicheskaya laboratornaya diagnostika. 2020;65(4):258–264. (In Russ.) doi: 10.18821/0869-2084-2020-65-4-258-264.
  40. Favero A, Segatto I, Perin T, Belletti B. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. Wiley Interdiscip Rev RNA. 2021;12(6):e1659. doi: 10.1002/wrna.1659.
  41. Kozlov VA, Savchenko AA, Kudryavtsev IV, Kozlov IG, Kudlay DA, Prodeus AP, Borisov AG. Klinicheskaya immunologiya. (Clinical immunology.) Krasnoyarsk: Polikor; 2020. 386 р. (In Russ.)
  42. Wang J, Wu J, Cheng Y, Jiang Y, Li G. Over-expression of microRNA-223 inhibited the proinflammatory responses in Helicobacter pylori-infection macrophages by down-regulating IRAK-1. Am J Transl Res. 2016;8(2):615–622. PMID: 27158353.
  43. González MF, Díaz P, Sandoval-Bórquez A, Herrera D, Quest AFG. Helicobacter pylori outer membrane vesicles and extracellular vesicles from Helicobacter pylori-infected cells in gastric disease development. Int J Mol Sci. 2021;22(9):4823. doi: 10.3390/ijms22094823.
  44. Pachathundikandi SK, Blaser N, Backert S. Mechanisms of inflammasome signaling, microRNA induction and resolution of inflammation by Helicobacter pylori. In: Backert S, editor. Molecular mechanisms of inflammation: Induction, resolution and escape by Helicobacter pylori. Current Topics in Microbiology and Immunology. Vol. 421. Springer, Cham; 2019. р. 267–302. doi: 10.1007/978-3-030-15138-6_11.
  45. Mohamed WA, Schaalan MF, Ramadan B. The expression profiling of circulating miR‐204, miR‐182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J Cell Biochem. 2019;120(8):13464–13477. doi: 10.1002/jcb.28620.
  46. Pereira AL, Magalhães L, Moreira FC, Reis-dasMercês L, Vidal AF, Ribeiro-Dos-Santos AM, Samia D, Ana KMA, Rommel MRB, Paulo A, Sidney EBS, Paulo PA, Ândrea KC Ribeiro-dos-Santos. Epigenetic field cancerization in gastric cancer: microRNAs as promising biomarkers. J Cancer. 2019;10(6):1560–1569. doi: 10.7150/jca. 27457.
  47. Agostini M, Knight RA. MiR-34: from bench to bedside. Oncotarget. 2014;5(4):872–981. doi: 10.18632/oncotarget.1825.
  48. Bordin DS, Shengeliya MI, Ivanova VA, Voynovan IN. Helicobacter pylori: clinical significance and diagnostic principles. Infectious diseases: news, opinions, training. 2022;11(1):119–129. (In Russ.) doi: 10.33029/2305-3496-2022-11-1-119-129.
  49. Arkhipova AA, Anishchenko VV. Modern possibilities and prospects of early diagnosis of stomach cancer. Acta Biomedica Scientifica. 2021;6(3):113–125. (In Russ.) doi: 10.29413/ABS.2021-6.3.12.
  50. Li N, Wang Z. Integrative analysis of deregulated miRNAs reveals candidate molecular mechanisms linking H. pylori infected peptic ulcer disease with periodontitis. Disease Markers. 2022. doi: 10.1155/2022/1498525.
  51. Tribolet L, Kerr E, Cowled C, Bean AGD, Stewart CR, Dearnley M, Farr RG. MicroRNA biomarkers for infectious diseases: From basic research to biosen-sing. Front Microbiol. 2020;11:1197. doi: 10.3389/fmicb.2020.01197.
  52. Yu J, Xu Q, Zhang X, Zhu M. Circulating microRNA signatures serve as potential diagnostic biomarkers for Helicobacter pylori infection. Jf Cell Biochem. 2019;120(2):1735–1741. doi: 10.1002/jcb.27462.
  53. Chen X, Song H, Chen X, Zeng M, Yang T, Lin Y, Liu H, Feng Y. Screening of core genes and key microRNAs in the treatment of Helicobacter pylori related peptic ulcer by Scutellariae Radix and Coptidis Rhizoma. Natural Product Research and Development. 2020;32(9):1456. doi: 10.16333/j.1001-6880.2020.9.002.

Supplementary files

There are no supplementary files to display.

© 2023 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies