Synthesis and application of chelated complexes [Zn(L-arg)2(H2O)] and [[Zn(L-arg)2(H2O)](SO4)]2– as chiral selectors
- Authors: Gizatov R.R.1, Teres Y.B.1, Galimov M.N.1, Bulysheva E.O.1, Berestova T.V.1, Zilberg R.A.1
-
Affiliations:
- Ufa University of Science and Technology
- Issue: Vol 51, No 5 (2025)
- Pages: 315-326
- Section: Articles
- URL: https://kazanmedjournal.ru/0132-344X/article/view/685209
- DOI: https://doi.org/10.31857/S0132344X25050042
- EDN: https://elibrary.ru/KWDKSI
- ID: 685209
Cite item
Abstract
By interaction of compounds Zn(II) and L-arginine (L-Arg) the chelated complexes [Zn(L-arg)2(H2O)] (I) and [[Zn(L-arg)2(H2O)](SO4)]2– (II) (L-arg is a deprotonated form of L-Arg) were synthesized. The structure of the obtained complexes was established by IR spectroscopy by comparing the experimental and theoretical IR spectra using quantum chemical modeling. Complexes I and II were studied as chiral selectors of enantioselective voltammetric sensors. It was shown that I exhibits better enantioselective compared to II. By DFT method, it was found that the difference in the exhibited enantioselectivity of complexes I and II can be due of the geometric isomerism of chelate compounds and the peculiarities of the coordination of the obtained complexes with the analyte molecule.
Full Text

About the authors
R. R. Gizatov
Ufa University of Science and Technology
Email: berestovatv@gmail.com
Russian Federation, Ufa
Yu. B. Teres
Ufa University of Science and Technology
Email: berestovatv@gmail.com
Russian Federation, Ufa
M. N. Galimov
Ufa University of Science and Technology
Email: berestovatv@gmail.com
Russian Federation, Ufa
E. O. Bulysheva
Ufa University of Science and Technology
Email: berestovatv@gmail.com
Russian Federation, Ufa
T. V. Berestova
Ufa University of Science and Technology
Author for correspondence.
Email: berestovatv@gmail.com
Russian Federation, Ufa
R. A. Zilberg
Ufa University of Science and Technology
Email: berestovatv@gmail.com
Russian Federation, Ufa
References
- Wojciechowska A., Janczak J., Rytlewski P. et al. // J. Mol. Struct. 2023. V. 1276. P. 134776.
- Fita I., Campos J.L., Puigjaner L.C. et al. // J. Mol. Biol. 1983. V. 167. P. 157.
- Yamauchi O., Odani A., Takani M. // Dalton Trans. 2002. V. 18. P. 3411.
- Chow S.T., McAuliffe C.A. // J. Inorg. Nucl. Chem. 1975. V. 37. № 4. P. 1059.
- Altowyan M.S., Yousri A., Albering J.H. et al. // Crystals. 2023. V. 13. № 9. P. 1375
- Tainer J.A., Getzoff E.D., Richardson J.S., Richardson D.C. // Nature. 1983. V. 306. № 5940. P. 284.
- Getzoff E.D., Tainer J.A., Weiner P.K. et al. // Nature. 1983. V. 306. № 5940. P. 287.
- Zil’berg R.A., Zagitova L.R., Vakulin I.V. et al. // J. Anal. Chem. 2021. V. 76. Р. 1438.
- Yarkaeva Y.A., Maistrenko V.N., Zagitova L.R. et al. // J. Electroanal. Chem. 2021. V. 903. Р. 115839.
- Maistrenko V.N., Zil’berg R. // J. Anal. Chem. 2020. V. 75. Р. 1514.
- Maistrenko V.N., Sidel’nikov A.V., Zil’berg R.A. // J. Anal. Chem. 2018. V. 73. Р. 1.
- Zou J., Zhao G.-Q., Zhao G.-L., Yu J.-G. // Coord. Chem. Rev. 2022. V. 471. Р. 214732.
- Niu X., Yang X., Li H., Liu J., Liu Z., Wang K. // Microchim. Acta. 2020. V. 187. Р. 676.
- Salinas G., Niamlaem M., Kuhn A. Arnaboldi S. // Curr. Opin. Colloid Interface Sci. 2022. V. 61. Р. 101626.
- Laurie S.H. Handbook of Metal–Ligand Interactions in Biological Fluids — Bioinorganic Chemistry. New York, 1995. V. 1. P. 603.
- Clarke E.R., Martell A.E. // J. Inorg. Nucl. Chem. 1970. V. 32. № 3. P. 911.
- Bottari E., Festa M.R., Gentile L. // Monatsh. Chem. 2014. V. 145. P. 1707.
- Deschamps P., Kulkarni P.P., Sarkar B.X. // Inorg. Chem. V. 43. № 11. P. 2004
- Schug K.A., Lindner W. // Chem. Rev. 2005. V. 105. P. 67.
- Ohata N., Masuda H., Yamauchi O. // Kobunshi Ronbunshu. 2000. V. 57. № 4. P. 167.
- Ohata N., Masuda H., Yamauchi O. // Inorg. Chim. Acta. 2000. V. 300–302. P. 749.
- Ohata N., Masuda H., Yamauchi O. // Inorg. Chim. Acta. 1999. V. 286. P. 37.
- Duarte M.T.L.S., Carrondo M.A.A.F.D.C.T., Simões Gonçalves M.L.S. et al. // Inorg. Chim. Acta. 1986. V. 124. P. 41.
- Musioł1 K., Janczak J., Helios K. et al. // Res. Chem. Intermed. 2023. V. 49. P. 3563.
- Yamauchi O., Odani A., Takanic M. // Dalton Trans. 2002. P. 3411.
- Ohata N., Masuda H., Yamauchi O. // Angew. Chem. Int. Ed. 1996. V. 35. P. 531.
- Alikhani M., Hakimi M., Moeini K. et al. // J. Inorg. Organomet. Polym. 2020. V. 30. P. 2907.
- Köse D.A., Toprak E., Avcl E., Avcl G.A. // J. Chin. Chem. Soc. 2014. V. 61 P. 881.
- Wojciechowska A., Kochel A., Duczmal M. // Mater. Chem. Phys. 2016. V. 182. P. 472.
- Alagha A., Brown D.A., Elawad M et al. // Inorg. Chim. Acta. 2011. V. 377 P. 185.
- Zilberg R.A., Teres J.B., Bulysheva E.O. et al. // Electrochim. Acta. 2024. V. 492. Р. 144334.
- Zilberg R.A., Berestova T.V., Gizatov R.R. et al. // Inorganics. 2022. V. 10. Р. 117.
- Yang M.-X., Zhou M.-J., Cao J.-P. // RSC Adv. 2020. V. 10. Р. 13759.
- Chen X., Zhang S., Shan X. et al. // Anal. Chim. Acta. 2019. V. 1072. P. 54.
- Zilberg R.A., Teres Y.B., Zagitova L.R. et al. // Anal. Control. 2021. V. 25. Р. 193.
- Berestova T.V., Khursan S.L., Mustafin A.G. // J. Spectrochim. Acta. 2020. V. 229. Р. 117950.
- Berestova T.V., Gizatov R.R., Galimov M.N., Mustafin A.G. //J. Mol. Struct. 2021. V. 1236. Р. 130303.
- Zhao Y., Truhlar D.G. // J. Theor. Chem. Acc. 2008. V. 120. Р. 215.
- Yoon U., Kim J., Kim S.H., Jeong K. // RSC Adv. 2024. V. 14. Р. 1051.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford (CT): Gaussian Inc., 2016. https://gaussian.com/g09citation
- Andrienko G.A. Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
- Hu C., Xiang C., Zhangqiang Y. Patent CN108383746A, 2018, C07C 229/76, C07C 227/18.
- Berestova T.V., Kuzina L.G., Amineva N.A. et al. // J. Mol. Struct. 2017. V. 1137. P. 260.
- Kolesov S.V., Gurinaand M.S., Mudarisova R.K. // Polym. Sci. A. 2019. V. 61. P. 253.
- Berestova T.V., Nosenko K.N., Lusina O.V. et al. // J. Struct. Chem. 2020. V. 61. P. 1876.
Supplementary files
