Synthesis and application of chelated complexes [Zn(L-arg)2(H2O)] and [[Zn(L-arg)2(H2O)](SO4)]2– as chiral selectors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By interaction of compounds Zn(II) and L-arginine (L-Arg) the chelated complexes [Zn(L-arg)2(H2O)] (I) and [[Zn(L-arg)2(H2O)](SO4)]2– (II) (L-arg is a deprotonated form of L-Arg) were synthesized. The structure of the obtained complexes was established by IR spectroscopy by comparing the experimental and theoretical IR spectra using quantum chemical modeling. Complexes I and II were studied as chiral selectors of enantioselective voltammetric sensors. It was shown that I exhibits better enantioselective compared to II. By DFT method, it was found that the difference in the exhibited enantioselectivity of complexes I and II can be due of the geometric isomerism of chelate compounds and the peculiarities of the coordination of the obtained complexes with the analyte molecule.

Full Text

Restricted Access

About the authors

R. R. Gizatov

Ufa University of Science and Technology

Email: berestovatv@gmail.com
Russian Federation, Ufa

Yu. B. Teres

Ufa University of Science and Technology

Email: berestovatv@gmail.com
Russian Federation, Ufa

M. N. Galimov

Ufa University of Science and Technology

Email: berestovatv@gmail.com
Russian Federation, Ufa

E. O. Bulysheva

Ufa University of Science and Technology

Email: berestovatv@gmail.com
Russian Federation, Ufa

T. V. Berestova

Ufa University of Science and Technology

Author for correspondence.
Email: berestovatv@gmail.com
Russian Federation, Ufa

R. A. Zilberg

Ufa University of Science and Technology

Email: berestovatv@gmail.com
Russian Federation, Ufa

References

  1. Wojciechowska A., Janczak J., Rytlewski P. et al. // J. Mol. Struct. 2023. V. 1276. P. 134776.
  2. Fita I., Campos J.L., Puigjaner L.C. et al. // J. Mol. Biol. 1983. V. 167. P. 157.
  3. Yamauchi O., Odani A., Takani M. // Dalton Trans. 2002. V. 18. P. 3411.
  4. Chow S.T., McAuliffe C.A. // J. Inorg. Nucl. Chem. 1975. V. 37. № 4. P. 1059.
  5. Altowyan M.S., Yousri A., Albering J.H. et al. // Crystals. 2023. V. 13. № 9. P. 1375
  6. Tainer J.A., Getzoff E.D., Richardson J.S., Richardson D.C. // Nature. 1983. V. 306. № 5940. P. 284.
  7. Getzoff E.D., Tainer J.A., Weiner P.K. et al. // Nature. 1983. V. 306. № 5940. P. 287.
  8. Zil’berg R.A., Zagitova L.R., Vakulin I.V. et al. // J. Anal. Chem. 2021. V. 76. Р. 1438.
  9. Yarkaeva Y.A., Maistrenko V.N., Zagitova L.R. et al. // J. Electroanal. Chem. 2021. V. 903. Р. 115839.
  10. Maistrenko V.N., Zil’berg R. // J. Anal. Chem. 2020. V. 75. Р. 1514.
  11. Maistrenko V.N., Sidel’nikov A.V., Zil’berg R.A. // J. Anal. Chem. 2018. V. 73. Р. 1.
  12. Zou J., Zhao G.-Q., Zhao G.-L., Yu J.-G. // Coord. Chem. Rev. 2022. V. 471. Р. 214732.
  13. Niu X., Yang X., Li H., Liu J., Liu Z., Wang K. // Microchim. Acta. 2020. V. 187. Р. 676.
  14. Salinas G., Niamlaem M., Kuhn A. Arnaboldi S. // Curr. Opin. Colloid Interface Sci. 2022. V. 61. Р. 101626.
  15. Laurie S.H. Handbook of Metal–Ligand Interactions in Biological Fluids — Bioinorganic Chemistry. New York, 1995. V. 1. P. 603.
  16. Clarke E.R., Martell A.E. // J. Inorg. Nucl. Chem. 1970. V. 32. № 3. P. 911.
  17. Bottari E., Festa M.R., Gentile L. // Monatsh. Chem. 2014. V. 145. P. 1707.
  18. Deschamps P., Kulkarni P.P., Sarkar B.X. // Inorg. Chem. V. 43. № 11. P. 2004
  19. Schug K.A., Lindner W. // Chem. Rev. 2005. V. 105. P. 67.
  20. Ohata N., Masuda H., Yamauchi O. // Kobunshi Ronbunshu. 2000. V. 57. № 4. P. 167.
  21. Ohata N., Masuda H., Yamauchi O. // Inorg. Chim. Acta. 2000. V. 300–302. P. 749.
  22. Ohata N., Masuda H., Yamauchi O. // Inorg. Chim. Acta. 1999. V. 286. P. 37.
  23. Duarte M.T.L.S., Carrondo M.A.A.F.D.C.T., Simões Gonçalves M.L.S. et al. // Inorg. Chim. Acta. 1986. V. 124. P. 41.
  24. Musioł1 K., Janczak J., Helios K. et al. // Res. Chem. Intermed. 2023. V. 49. P. 3563.
  25. Yamauchi O., Odani A., Takanic M. // Dalton Trans. 2002. P. 3411.
  26. Ohata N., Masuda H., Yamauchi O. // Angew. Chem. Int. Ed. 1996. V. 35. P. 531.
  27. Alikhani M., Hakimi M., Moeini K. et al. // J. Inorg. Organomet. Polym. 2020. V. 30. P. 2907.
  28. Köse D.A., Toprak E., Avcl E., Avcl G.A. // J. Chin. Chem. Soc. 2014. V. 61 P. 881.
  29. Wojciechowska A., Kochel A., Duczmal M. // Mater. Chem. Phys. 2016. V. 182. P. 472.
  30. Alagha A., Brown D.A., Elawad M et al. // Inorg. Chim. Acta. 2011. V. 377 P. 185.
  31. Zilberg R.A., Teres J.B., Bulysheva E.O. et al. // Electrochim. Acta. 2024. V. 492. Р. 144334.
  32. Zilberg R.A., Berestova T.V., Gizatov R.R. et al. // Inorganics. 2022. V. 10. Р. 117.
  33. Yang M.-X., Zhou M.-J., Cao J.-P. // RSC Adv. 2020. V. 10. Р. 13759.
  34. Chen X., Zhang S., Shan X. et al. // Anal. Chim. Acta. 2019. V. 1072. P. 54.
  35. Zilberg R.A., Teres Y.B., Zagitova L.R. et al. // Anal. Control. 2021. V. 25. Р. 193.
  36. Berestova T.V., Khursan S.L., Mustafin A.G. // J. Spectrochim. Acta. 2020. V. 229. Р. 117950.
  37. Berestova T.V., Gizatov R.R., Galimov M.N., Mustafin A.G. //J. Mol. Struct. 2021. V. 1236. Р. 130303.
  38. Zhao Y., Truhlar D.G. // J. Theor. Chem. Acc. 2008. V. 120. Р. 215.
  39. Yoon U., Kim J., Kim S.H., Jeong K. // RSC Adv. 2024. V. 14. Р. 1051.
  40. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford (CT): Gaussian Inc., 2016. https://gaussian.com/g09citation
  41. Andrienko G.A. Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
  42. Hu C., Xiang C., Zhangqiang Y. Patent CN108383746A, 2018, C07C 229/76, C07C 227/18.
  43. Berestova T.V., Kuzina L.G., Amineva N.A. et al. // J. Mol. Struct. 2017. V. 1137. P. 260.
  44. Kolesov S.V., Gurinaand M.S., Mudarisova R.K. // Polym. Sci. A. 2019. V. 61. P. 253.
  45. Berestova T.V., Nosenko K.N., Lusina O.V. et al. // J. Struct. Chem. 2020. V. 61. P. 1876.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Energy parameters of trans- and cis-isomers of the [Zn(L-arg)2(H2O)] complex.

Download (138KB)
3. Fig. 2. Experimental (red) and theoretical (black) IR spectra of trans- and cis-dimensions of the [Zn(L-arg)2(H2O)] complex in the region of characteristic absorption bands.

Download (262KB)
4. Fig. 3. Experimental (blue) and theoretical (black) IR spectra of complexes IIa (a) and IIb (b) in the region of characteristic absorption bands.

Download (247KB)
5. Fig. 4. Differential-pulse voltammograms of 1 mM solutions of enantiomers of biologically active substances on different electrodes: (a, b, c) GCE/PEC-trans-[Zn(L-arg)2(H2O)] and (d, d, e) GCE/PEC-cis-[[Zn(L-arg)2(H2O)](SO4)]2− (phosphate buffer solution with pH 6.86, potential scan rate 0.2 V/s).

Download (363KB)
6. Fig. 5. Quatovochemical modeling of the intermediates trans-[[Zn(L-arg)2(H2O)](SO4)]2– (a), cis-[[Zn(L-arg)2(H2O)](SO4)]2– (b), trans-[Zn(L-arg)2(H2O)] Tyr (c) and cis-[Zn(L-arg)2(H2O)] Tyr (d).

Download (346KB)
7. Fig. 6. Energy parameters of the intermediates trans-[[Zn(L-arg)2(H2O)](SO4)]2– and cis-[[Zn(L-arg)2(H2O)](SO4)]2– (a), trans-[Zn(L-arg)2(H2O)] Tyr and cis-[Zn(L-arg)2(H2O)] Tyr (b).

Download (332KB)
8. Scheme 1. Synthesis of complexes [Zn(L-arg)2(H2O)] (I) and [[Zn(L-arg)2(H2O)](SO4)]2– (II).

Download (110KB)

Copyright (c) 2025 Российская академия наук