Features of nonequilibrium pinning of charge density waves in compounds HoTe3 and TmTe3

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, the similarity of glass systems with pinning in compounds with a charge density wave (CDW) TmTe3 and HoTe3 was investigated. For this purpose, the differential IVs in micro-bridge structures oriented along the sliding direction of the CDW, with a multi-stage temperature change, were studied. In such a system with a sliding CDW, the changing behavior of the threshold field during isothermal exposure was shown, with characteristic relaxation on a logarithmic time scale. A property characteristic of glass systems has been found – the memory effect, which allows us to assert the unusual glass nature of the system of pinning centers in this system.

Texto integral

Acesso é fechado

Sobre autores

D. Voropaev

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Search University)

Autor responsável pela correspondência
Email: voropaev.dm@phystech.edu
Rússia, Mokhovaya Str., 11, build 7, Moscow, 125009; Institutskii per. 9, Dolgoprudny, Moscow Region, 141701

A. Frolov

Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: voropaev.dm@phystech.edu
Rússia, Mokhovaya Str., 11, build 7, Moscow, 125009

A. Orlov

Kotelnikov Institute of Radioengineering and Electronics of RAS; Institute of Nanotechnology of Microelectronics of RAS

Email: voropaev.dm@phystech.edu
Rússia, Mokhovaya Str., 11, build 7, Moscow, 125009; Nagatinskaya Str., 16a, build. 11, Moscow, 115487

A. Sinchenko

Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: voropaev.dm@phystech.edu
Rússia, Mokhovaya Str., 11, build 7, Moscow, 125009

Bibliografia

  1. Grüner G. // Rev. Modern Phys. 1988. V. 60. № 4. P. 1129.
  2. Monceau P. // Adv. Phys. 2012. V. 61. № 4. P. 325.
  3. Monceau P., Ong N. P., Portis A. M. et al. // Phys. Rev. Lett. 1976. V. 37. № 10. P. 602.
  4. Sinchenko A. A., Lejay P., Monceau P. // Phys. Rev. B. 2012. V. 85. № 24. P. 241104.
  5. Sinchenko A. A., Lejay P., Leynaud O., Monceau P. // Solid State Commun. 2014. V. 188. P. 67.
  6. Nowadnick E. A., Johnston S., Moritz B. et al. // Phys. Rev. Lett. 2012. V. 109. № 24. P. 246404.
  7. Hu B. F., Cheng B., Yuan R. H. et al. // Phys. Rev. B. 2014. V. 90. № 8. P. 085105.
  8. Iyeiri Y., Okumura T., Michioka C., Suzuki K. // Phys. Rev. B. 2003. V. 67. № 14. P. 144417.
  9. Ru N., Chu J. H., Fisher I. R. // Phys. Rev. B. 2008. V. 78. № 1. P. 012410.
  10. Zocco D. A., Hamlin J. J., Grube K. et al. // Phys. Rev. B. 2015. V. 91. № 20. P. 205114.
  11. Hamlin J. J., Zocco D. A., Sayles T. A. et al. // Phys. Rev. Lett. 2009. V. 102. № 17. P. 177002.
  12. Фролов А. В., Орлов А. П., Воропаев Д. П. и др. // Письма в ЖЭТФ. 2023. Т. 117. № 2. С. 171.
  13. Frolov A. V., Orlov A. P., Voropaev D. M. et al. // Appl. Phys. Lett. 2021. V. 118. № 25. P. 253102.
  14. Фролов А. В., Орлов А. П., Синченко А. А., Монсо П. // Письма в ЖЭТФ. Т. 109. № 3. С. 196.
  15. Frolov A. V., Orlov A. P., Hadj-Azzem A. et al. // Phys. Rev. B. 2020. V. 101. № 15. P. 155144.
  16. Jonason K., Nordblad P., Vincent E. et al. // Eur. Phys. J. B – Cond. Matt. Complex Systems. 2000. V. 13. № 1. P. 99.
  17. Jonason K., Vincent E., Hammann J. et al. // Phys. Rev. Lett. 1998. V. 81. № 15. P. 3243.
  18. Bag P., Baral P. R., Nath R. // Phys. Rev. B. 2018. V. 98. № 14. P. 144436.
  19. Di Masi E., Foran B., Aronson M. C., Lee S. // Chem. Mater. 1994. V. 6. № 10. P. 1867.
  20. Lefloch F., Hammann J., Ocio M., Vincent E. // Europhysics Lett. 1992. V. 18. № 7. P. 647.
  21. Доценко В. С. // Успехи физ. наук. 1993. Т. 163. № 6. С. 1.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Optical photograph of a thin TmTe3 crystal in transmission.

Baixar (82KB)
3. Fig. 2. Optical photograph of a crystal on a substrate with gold contacts.

Baixar (216KB)
4. Fig. 3. Optical photograph in transmission of a HoTe3 junction of a multi-contact bridge structure cut using FIB in two crystal directions.

Baixar (75KB)
5. Fig. 4. Differential volt-ampere characteristics of a bridge with a characteristic threshold (threshold voltages Vt are indicated in the figure), due to the breakdown and sliding of the VZP, respectively, before (1) and after a time delay of 138 h (2). The curves are shifted relative to each other along the y axis.

Baixar (107KB)
6. Fig. 5. Evolution of the threshold field values ​​in the TmTe3 compound: a – during isothermal holding at temperatures of 210 (1) and 220 K (2), b – plotted on a semi-logarithmic scale.

Baixar (186KB)
7. Fig. 6. Memory effect in TmTe3: a – evolution of the threshold field (circles) at different holding temperatures (solid line); b – evolution of the threshold field when connecting sectors A, B and D with the same temperature of 220 K.

Baixar (240KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024