Features of nonequilibrium pinning of charge density waves in compounds HoTe3 and TmTe3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the similarity of glass systems with pinning in compounds with a charge density wave (CDW) TmTe3 and HoTe3 was investigated. For this purpose, the differential IVs in micro-bridge structures oriented along the sliding direction of the CDW, with a multi-stage temperature change, were studied. In such a system with a sliding CDW, the changing behavior of the threshold field during isothermal exposure was shown, with characteristic relaxation on a logarithmic time scale. A property characteristic of glass systems has been found – the memory effect, which allows us to assert the unusual glass nature of the system of pinning centers in this system.

Full Text

Restricted Access

About the authors

D. M. Voropaev

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Search University)

Author for correspondence.
Email: voropaev.dm@phystech.edu
Russian Federation, Mokhovaya Str., 11, build 7, Moscow, 125009; Institutskii per. 9, Dolgoprudny, Moscow Region, 141701

A. V. Frolov

Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: voropaev.dm@phystech.edu
Russian Federation, Mokhovaya Str., 11, build 7, Moscow, 125009

A. P. Orlov

Kotelnikov Institute of Radioengineering and Electronics of RAS; Institute of Nanotechnology of Microelectronics of RAS

Email: voropaev.dm@phystech.edu
Russian Federation, Mokhovaya Str., 11, build 7, Moscow, 125009; Nagatinskaya Str., 16a, build. 11, Moscow, 115487

A. A. Sinchenko

Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: voropaev.dm@phystech.edu
Russian Federation, Mokhovaya Str., 11, build 7, Moscow, 125009

References

  1. Grüner G. // Rev. Modern Phys. 1988. V. 60. № 4. P. 1129.
  2. Monceau P. // Adv. Phys. 2012. V. 61. № 4. P. 325.
  3. Monceau P., Ong N. P., Portis A. M. et al. // Phys. Rev. Lett. 1976. V. 37. № 10. P. 602.
  4. Sinchenko A. A., Lejay P., Monceau P. // Phys. Rev. B. 2012. V. 85. № 24. P. 241104.
  5. Sinchenko A. A., Lejay P., Leynaud O., Monceau P. // Solid State Commun. 2014. V. 188. P. 67.
  6. Nowadnick E. A., Johnston S., Moritz B. et al. // Phys. Rev. Lett. 2012. V. 109. № 24. P. 246404.
  7. Hu B. F., Cheng B., Yuan R. H. et al. // Phys. Rev. B. 2014. V. 90. № 8. P. 085105.
  8. Iyeiri Y., Okumura T., Michioka C., Suzuki K. // Phys. Rev. B. 2003. V. 67. № 14. P. 144417.
  9. Ru N., Chu J. H., Fisher I. R. // Phys. Rev. B. 2008. V. 78. № 1. P. 012410.
  10. Zocco D. A., Hamlin J. J., Grube K. et al. // Phys. Rev. B. 2015. V. 91. № 20. P. 205114.
  11. Hamlin J. J., Zocco D. A., Sayles T. A. et al. // Phys. Rev. Lett. 2009. V. 102. № 17. P. 177002.
  12. Фролов А. В., Орлов А. П., Воропаев Д. П. и др. // Письма в ЖЭТФ. 2023. Т. 117. № 2. С. 171.
  13. Frolov A. V., Orlov A. P., Voropaev D. M. et al. // Appl. Phys. Lett. 2021. V. 118. № 25. P. 253102.
  14. Фролов А. В., Орлов А. П., Синченко А. А., Монсо П. // Письма в ЖЭТФ. Т. 109. № 3. С. 196.
  15. Frolov A. V., Orlov A. P., Hadj-Azzem A. et al. // Phys. Rev. B. 2020. V. 101. № 15. P. 155144.
  16. Jonason K., Nordblad P., Vincent E. et al. // Eur. Phys. J. B – Cond. Matt. Complex Systems. 2000. V. 13. № 1. P. 99.
  17. Jonason K., Vincent E., Hammann J. et al. // Phys. Rev. Lett. 1998. V. 81. № 15. P. 3243.
  18. Bag P., Baral P. R., Nath R. // Phys. Rev. B. 2018. V. 98. № 14. P. 144436.
  19. Di Masi E., Foran B., Aronson M. C., Lee S. // Chem. Mater. 1994. V. 6. № 10. P. 1867.
  20. Lefloch F., Hammann J., Ocio M., Vincent E. // Europhysics Lett. 1992. V. 18. № 7. P. 647.
  21. Доценко В. С. // Успехи физ. наук. 1993. Т. 163. № 6. С. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Optical photograph of a thin TmTe3 crystal in transmission.

Download (82KB)
3. Fig. 2. Optical photograph of a crystal on a substrate with gold contacts.

Download (216KB)
4. Fig. 3. Optical photograph in transmission of a HoTe3 junction of a multi-contact bridge structure cut using FIB in two crystal directions.

Download (75KB)
5. Fig. 4. Differential volt-ampere characteristics of a bridge with a characteristic threshold (threshold voltages Vt are indicated in the figure), due to the breakdown and sliding of the VZP, respectively, before (1) and after a time delay of 138 h (2). The curves are shifted relative to each other along the y axis.

Download (107KB)
6. Fig. 5. Evolution of the threshold field values ​​in the TmTe3 compound: a – during isothermal holding at temperatures of 210 (1) and 220 K (2), b – plotted on a semi-logarithmic scale.

Download (186KB)
7. Fig. 6. Memory effect in TmTe3: a – evolution of the threshold field (circles) at different holding temperatures (solid line); b – evolution of the threshold field when connecting sectors A, B and D with the same temperature of 220 K.

Download (240KB)

Copyright (c) 2024 Russian Academy of Sciences