Phonon spectroscopy and features of low-temperature heat capacity of solid solutions of electrolytes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetic characteristics of thermal frequency phonons in the region of helium temperatures in ceramic samples of the Ce1–xGdxO2–y electrolyte solid solution have been studied. To explain the temperature dependence of the phonon mean free path, we used the previously performed calculations of the energy of vacancy formation in the anion sublattice of a solid solution of zirconium dioxide stabilized by yttrium ZrO2:Y2O3 (YSZ) with a similar crystal structure. It is shown that in the Ce1–xGdxO2–y system under study, the formation of structural defects associated with the presence of vacancies in the anion sublattice with energy Δ = 8.53 K is possible. It has been established that analysis of the temperature dependences of the YSZ heat capacity allows one to trace the degree of disorder (amorphization) of the solid solution depending on its level of stabilization.

Full Text

Restricted Access

About the authors

E. I. Salamatov

Institute of Physics and Technology of the Udmurt Federal Research Center of the Ural branch of the Russian Academy of Sciences

Email: taranov@cplire.ru
Russian Federation, Izhevsk

A. V. Taranov

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Author for correspondence.
Email: taranov@cplire.ru
Russian Federation, Moscow

E. N. Khazanov

Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences

Email: taranov@cplire.ru
Russian Federation, Moscow

References

  1. Tojo T., Atake T., Mori T., Yamamura H. // J. Thermal Analysis and Calorimetry. 1999. V. 57. № 1.P. 447.
  2. Vlachos D., Craven A.J., McComb D.W. // J. Phys.: Cond. Matt. 2001. V.13. № 10. P. 799.
  3. Саламатов Е.И., Таранов А.В., Хазанов Е.Н. // РЭ. 2022. Т. 67. № 6. С. 523.
  4. Degueldre C., Tissot P., Lartigue H., Pouchon M. // Thermochimica Acta. 2003. V. 403. № 2. P. 267.
  5. Ostanin S.A., Salamatov E.I. // Письма в ЖЭТФ. 2001. Т. 74. № 11. С. 625.
  6. Ostanin S., Craven A.J., McComb D.W. et al // Phys. Rev. B. 2002. V. 65. № 22. P. 224109.
  7. Ostanin S., Salamatov E. // Phys. Rev. B. 2003. V. 68. № 17. P. 172106.
  8. Hayashi H., Kanoh M., Ch. Ji Quan et al. // SolidState Ionics. 2000. V. 132. № 3–4. P. 227.
  9. Hisashige T., Yamamura Y., Tsuji T. // J. Alloys and Compounds. 2006. V. 408–412. P. 1153.
  10. Wang Y., Duncan K., Wachsman E.D., Ebrahimi F. // Solid State Ionics. 2007. V.178. № 1–2. P. 53.
  11. Хазанов Е.Н., Таранов А.В. // РЭ. 2013. Т. 58. № 9. С. 874.
  12. Atkinson A., Selcuk A. // Solid State Ionics. 2000. V. 134. №1–2. P. 59.
  13. Барабаненков Ю.Н., Иванов В.В., Иванов С.Н. и др. // ЖЭТФ. 2006. Т. 129. № 1. С. 131.
  14. Ackеrman D.A., Moy D., Potter R.C., Anderson A.C. // Phys. Rev. B. 1981. V. 23. № 8. P. 3886.
  15. Саламатов Е.И., Таранов А.В., Хазанов Е.Н. и др. // ЖЭТФ. 2017. Т. 152. № 5. С. 910.
  16. Иванов С.Н., Егоров Г.В., Попов П.А. // ФТТ. 1992. Т. 34. № 11. С. 3599.
  17. Лезова И.E., Карбань О.В., Таранов A.В. и др. // ЖЭТФ. 2020. Т. 157. № 1. С. 90.
  18. Борик М.А., Бублик В.Т., Кулебякин А.В. и др. // ФТТ. 2013. Т. 55. № 8. С. 1578.
  19. Малиновский В.К., Новиков В.Н., Соколов А.П. // Успехи физ. наук. 1993. Т. 163. № 5. С. 119.
  20. Лезова И.E., Саламатов Е.И., Таранов A.В. и др. // ЖЭТФ. 2019. Т. 156. № 5. С. 918.
  21. Саламатов Е.И. // ФТТ. 2002. Т. 44. № 5. С. 935.
  22. Саламатов Е.И. // ФТТ. 2003. Т. 45. № 4. С. 691.
  23. Козорезов А.Г. // ЖЭТФ. 1991. Т. 100. № 5. С. 1577.
  24. Карбань О.В., Саламатов Е.И., Таранов А.В. и др. // ЖЭТФ. 2009. Т. 135. № 4. С. 758.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature dependence of l for samples of the same size (R ≈ 200 nm) with different impurity contents: x = 0.091 (1), 0.126 (2), 0.20 (3), and 0.30 (4); solid lines show the calculated theoretical dependences. The inset shows the recorded signals in the Ce0.909Gd0.091O2–y TE ceramic sample at different thermostat temperatures: T = 3.76 (1), 3.64 (2), 3.44 (3), 3.13 (4), and 2.81 K (5).

Download (102KB)
3. Fig. 2. Dependences of thermal conductivity in YSZ 4.5% (curve 1) and PMN (2) single crystals on temperature; inset – dependences of heat capacity in YSZ 4.5% [14] (curve 1) and 5% (2) on temperature.

Download (91KB)
4. Fig. 3. Experimental (points) and calculated (curves) dependences of the diffusion coefficient D on temperature (a) in YSZ samples 0.1 cm long with a concentration of 12 (1) and 20 mol. % Y2O3 (2). Dependences of the diffusion coefficient on temperature in YSZ (b): solid line – D ~ T–4 ; curve 1 – 5 % Y2O3, L = 0.08 cm; curve 2 – 20 %, L = 0.085; curve 3 – 20 %, L = 0.04; curve 4 – 5 %, L = 0.05.

Download (93KB)
5. Fig. 4. Dependences of the C/T3 value on temperature for YSZ samples: 4.5% [14] (1), 5% [15] (2), 20% [15] (3), 7.76% [1] (4).

Download (66KB)

Copyright (c) 2024 Russian Academy of Sciences