Phonon spectroscopy and features of low-temperature heat capacity of solid solutions of electrolytes
- 作者: Salamatov E.I.1, Taranov A.V.2, Khazanov E.N.2
-
隶属关系:
- Institute of Physics and Technology of the Udmurt Federal Research Center of the Ural branch of the Russian Academy of Sciences
- Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences
- 期: 卷 69, 编号 2 (2024)
- 页面: 180-186
- 栏目: РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ
- URL: https://kazanmedjournal.ru/0033-8494/article/view/650713
- DOI: https://doi.org/10.31857/S0033849424020091
- EDN: https://elibrary.ru/KMIQVQ
- ID: 650713
如何引用文章
详细
The kinetic characteristics of thermal frequency phonons in the region of helium temperatures in ceramic samples of the Ce1–xGdxO2–y electrolyte solid solution have been studied. To explain the temperature dependence of the phonon mean free path, we used the previously performed calculations of the energy of vacancy formation in the anion sublattice of a solid solution of zirconium dioxide stabilized by yttrium ZrO2:Y2O3 (YSZ) with a similar crystal structure. It is shown that in the Ce1–xGdxO2–y system under study, the formation of structural defects associated with the presence of vacancies in the anion sublattice with energy Δ = 8.53 K is possible. It has been established that analysis of the temperature dependences of the YSZ heat capacity allows one to trace the degree of disorder (amorphization) of the solid solution depending on its level of stabilization.
全文:

作者简介
E. Salamatov
Institute of Physics and Technology of the Udmurt Federal Research Center of the Ural branch of the Russian Academy of Sciences
Email: taranov@cplire.ru
俄罗斯联邦, Izhevsk
A. Taranov
Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences
编辑信件的主要联系方式.
Email: taranov@cplire.ru
俄罗斯联邦, Moscow
E. Khazanov
Kotelnikov Institute of Radioengineering and Electronics Russian Academy of Sciences
Email: taranov@cplire.ru
俄罗斯联邦, Moscow
参考
- Tojo T., Atake T., Mori T., Yamamura H. // J. Thermal Analysis and Calorimetry. 1999. V. 57. № 1.P. 447.
- Vlachos D., Craven A.J., McComb D.W. // J. Phys.: Cond. Matt. 2001. V.13. № 10. P. 799.
- Саламатов Е.И., Таранов А.В., Хазанов Е.Н. // РЭ. 2022. Т. 67. № 6. С. 523.
- Degueldre C., Tissot P., Lartigue H., Pouchon M. // Thermochimica Acta. 2003. V. 403. № 2. P. 267.
- Ostanin S.A., Salamatov E.I. // Письма в ЖЭТФ. 2001. Т. 74. № 11. С. 625.
- Ostanin S., Craven A.J., McComb D.W. et al // Phys. Rev. B. 2002. V. 65. № 22. P. 224109.
- Ostanin S., Salamatov E. // Phys. Rev. B. 2003. V. 68. № 17. P. 172106.
- Hayashi H., Kanoh M., Ch. Ji Quan et al. // SolidState Ionics. 2000. V. 132. № 3–4. P. 227.
- Hisashige T., Yamamura Y., Tsuji T. // J. Alloys and Compounds. 2006. V. 408–412. P. 1153.
- Wang Y., Duncan K., Wachsman E.D., Ebrahimi F. // Solid State Ionics. 2007. V.178. № 1–2. P. 53.
- Хазанов Е.Н., Таранов А.В. // РЭ. 2013. Т. 58. № 9. С. 874.
- Atkinson A., Selcuk A. // Solid State Ionics. 2000. V. 134. №1–2. P. 59.
- Барабаненков Ю.Н., Иванов В.В., Иванов С.Н. и др. // ЖЭТФ. 2006. Т. 129. № 1. С. 131.
- Ackеrman D.A., Moy D., Potter R.C., Anderson A.C. // Phys. Rev. B. 1981. V. 23. № 8. P. 3886.
- Саламатов Е.И., Таранов А.В., Хазанов Е.Н. и др. // ЖЭТФ. 2017. Т. 152. № 5. С. 910.
- Иванов С.Н., Егоров Г.В., Попов П.А. // ФТТ. 1992. Т. 34. № 11. С. 3599.
- Лезова И.E., Карбань О.В., Таранов A.В. и др. // ЖЭТФ. 2020. Т. 157. № 1. С. 90.
- Борик М.А., Бублик В.Т., Кулебякин А.В. и др. // ФТТ. 2013. Т. 55. № 8. С. 1578.
- Малиновский В.К., Новиков В.Н., Соколов А.П. // Успехи физ. наук. 1993. Т. 163. № 5. С. 119.
- Лезова И.E., Саламатов Е.И., Таранов A.В. и др. // ЖЭТФ. 2019. Т. 156. № 5. С. 918.
- Саламатов Е.И. // ФТТ. 2002. Т. 44. № 5. С. 935.
- Саламатов Е.И. // ФТТ. 2003. Т. 45. № 4. С. 691.
- Козорезов А.Г. // ЖЭТФ. 1991. Т. 100. № 5. С. 1577.
- Карбань О.В., Саламатов Е.И., Таранов А.В. и др. // ЖЭТФ. 2009. Т. 135. № 4. С. 758.
补充文件
