Modelling of insulating potential in ultra-thin (42 Å) silicon oxide film
- Authors: Goldman E.I.1, Chucheva G.V.1, Shusharin I.A.1
-
Affiliations:
- Frayzino branch Kotelnikov Institute of Radio-engineering and Electronics of RAS
- Issue: Vol 69, No 3 (2024)
- Pages: 253-259
- Section: НАНОЭЛЕКТРОНИКА
- URL: https://kazanmedjournal.ru/0033-8494/article/view/650701
- DOI: https://doi.org/10.31857/S0033849424030061
- EDN: https://elibrary.ru/JVBQXB
- ID: 650701
Cite item
Abstract
Based on previously conducted measurements of the tunneling current-voltage characteristics of metal-SiO2-Si (MOS) structures, modeling of the insulating potential in an ultra-thin (4.2 nm) silicon oxide film was performed. The potential in the dielectric was defined in the shape of a trapezoid, with the lateral slopes simulating transition layers and the top base representing the bulk of SiO2. The model parameters – the barrier height and the coordinates of the trapezoid's corner points – were calculated to achieve the maximum match between the experimental and theoretical voltage derivatives of the current logarithm. Common features of the insulating potential, similar to those in thinner silicon oxide films (3.7 nm), were identified: the barrier occupies up to half of the nominal volume of the dielectric gap and is shifted towards the gate electrode, with its slope towards the semiconductor substrate being much more gradual compared to the slope adjacent to the gate.
Full Text

About the authors
E. I. Goldman
Frayzino branch Kotelnikov Institute of Radio-engineering and Electronics of RAS
Email: gvc@ms.ire.rssi.ru
Russian Federation, Vvedensky Square, 1, Fryazino, Moscow region, 141190
G. V. Chucheva
Frayzino branch Kotelnikov Institute of Radio-engineering and Electronics of RAS
Author for correspondence.
Email: gvc@ms.ire.rssi.ru
Russian Federation, Vvedensky Square, 1, Fryazino, Moscow region, 141190
I. A. Shusharin
Frayzino branch Kotelnikov Institute of Radio-engineering and Electronics of RAS
Email: gvc@ms.ire.rssi.ru
Russian Federation, Vvedensky Square, 1, Fryazino, Moscow region, 141190
References
- Zwanenburg F.A., Dzurak A.S., Morello A. et al. // Rev. Mod. Phys. 2013. V. 85. № 3. P. 961.https://doi.org/10.1103/RevModPhys.85.961.
- Красников Г.Я., Горнев Е.С., Матюшкин И.В. // Электрон. техника. Сер. 3. Микроэлектроника. 2018. С. 63.
- Черняев М.В., Горохов С.А., Патюков С.И., Резванов А.А. // Электрон. техника. Сер. 3. Микроэлектроника. 2022. С. 31.
- Muller D.A., Sorsch T., Moccio S. et al. // Nature. 1999. V. 399. № 6738. P. 758.https://doi.org/10.1038/21602.
- Vasudevan R., Pilania G., Balachandran P.V. // J. Appl. Phys. 2021. V. 129. P. 070401.https://doi.org/10.1063/5.0043300.
- Тахтамиров Э.Е., Волков В.А. // ЖЭТФ. 1999. Т. 116. № 5. С. 1843.
- Андо Т., Фаулер А., Стерн Ф. Электронные свойства двумерных систем. М.: Мир, 1985.
- Барабан А.П., Булавинов В.В., Коноров П.П. Электроника слоев на кремнии. Л.: Изд-во ЛГУ, 1988.
- Гольдман Е.И., Левашов С.А., Чучева Г.В. // ФТП. 2019. Т. 53. № 4. С. 481.https://doi.org/10.21883/FTP.2019.04.47444.9011.
- Белорусов Д.А., Гольдман Е.И., Нарышкина В.Г., Чучева Г.В. // ФТП. 2021. Т. 55. № 1. С. 24.https://doi.org/10.21883/FTP.2021.01.50379.9511.
- Гольдман Е.И., Ждан А.Г., Кухарская Н.Ф., Черняев М.В. // ФТП. 2008. Т. 42. № 1. С. 94.
- Гольдман Е.И., Чучева Г.В., Шушарин И.А. // ФТП. 2022. Т. 56. № 3. С. 328.https://doi.org/10.21883/FTP.2022.03.52119.9756.
- Тихонов А.Н., Арсенин В.А. Методы решения некорректных задач. М: Наука, 1986.
- Гольдман Е.И., Иванов В.А. Адаптивный тихоновский алгоритм построения производных экспериментальных зависимостей. Препринт ИРЭ АН СССР № 22(551). М.: ИРЭ АН СССР, 1990. 24с.
Supplementary files
