Влияние устойчивости к гипоксии на соотношение между показателями свободнорадикального окисления липидов и белков в почках крыс в постреанимационном периоде

Обложка


Цитировать

Полный текст

Аннотация

Цель. Исследование соотношения между показателями свободнорадикального окисления белков и липидов в почках крыс в постреанимационном периоде после остановки системного кровообращения в зависимости от их устойчивости к гипоксии. Методы. Остановку системного кровообращения интраторакальным пережатием сосудисто-нервного пучка длительностью 5 мин моделировали под эфирным наркозом на самцах неинбредных белых крыс, разделённых после тестирования на две группы по устойчивости к гипоксии. Период наблюдения составлял 35 дней. В гомогенатах тканей почек определяли содержание продуктов, реагирующих с тиобарбитуровой кислотой, карбонилированных белков, образование металл-катализируемых карбонилированных белков и битирозина. Результаты. Установлено, что характерным проявлением окислительного стресса в восстановительном периоде после остановки кровообращения и реанимации бывает реципрокность отношений между уровнями липопероксидации и окислительной модификации белков. Для высокоустойчивых к гипоксии животных характерна высокая устойчивость белков ткани почек к свободнорадикальному окислению на фоне высокого уровня перекисного окисления липидов. Напротив, у животных, неустойчивых к гипоксии, на фоне относительно низких значений липопероксидации регистрировали высокие уровни показателей окислительного модифицирования белков, как исходные, так и индуцированные. Вывод. В постреанимационном периоде у высокоустойчивых к гипоксии животных в почках происходит выраженная активация липопероксидации, сопровождающаяся транзиторным повышением карбонилирования белков в ранние сроки наблюдения; для низкоустойчивых к гипоксии животных характерна высокая интенсивность карбонильного стресса на фоне относительной «сохранности» липидных структур клетки, сохраняющаяся в течение всего постреанимационного периода, что может вносить существенный вклад в повреждение почек, повышая риск развития почечной недостаточности.

Об авторах

Гульнар Анузовна Байбурина

Башкирский государственный медицинский университет

Email: gulnar.2014@mail.ru
г. Уфа, Россия

Елена Александровна Нургалеева

Башкирский государственный медицинский университет

Email: gulnar.2014@mail.ru
г. Уфа, Россия

Эдуард Феликсович Аглетдинов

Башкирский государственный медицинский университет

Email: gulnar.2014@mail.ru
г. Уфа, Россия

Айгуль Фидратовна Самигуллин

Башкирский государственный медицинский университет

Email: gulnar.2014@mail.ru
г. Уфа, Россия

Список литературы

  1. Curtis J.M., Hahn W.S., Long E.K. et al. Protein carbonylation and metabolic control systems. Trends Endocrinol. Metab. 2012; 23 (8): 399-406. doi: 10.1016/j.tem.2012.05.008.
  2. Губский Ю.И., Беленичев И.Ф., Левицкий Е.Л. и др. Токсикологические последствия окислительной модификации белков при различных патологических состояниях. Совр. пробл. токсикол. 2005; 3: 20-26.
  3. Лукьянова Л.Д. Сигнальная функция митохондрий при гипоксии и адаптации. Патогенез. 2008; 6 (3): 4-12.
  4. Грек O.P., Ефремов А.В., Шарапов В.И. Гипобарическая гипоксия и метаболизм ксенобиотиков. М.: ГЭОТАР-Медиа. 2007; 120 с.
  5. Lash L.H., Cummings B.S. Mechanisms of toxicant-induced acute kidney injury. Comprehensive toxicology - renal toxicology. Oxford: Elsevier. 2010; 81-116.
  6. Sabbahy E.M., Vaidya V.S. Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011; 3 (5): 606-618. doi: 10.1002/wsbm.133.
  7. Rodriguez F., Bonacasa B., Fenoy F.J., Salom M.G. Reactive oxygen and nitrogen species in the renal ischemia/reperfusion injury. Curr. Pharm. Des. 2013; 19 (15): 2776-2794.
  8. Байбурина Г.А., Нургалеева Е.А., Шибкова Д.З. и др. Способ определения степени устойчивости к гипобарической гипоксии мелких лабораторных животных. Патент на изобретение РФ №2563059. Бюлл. №26 от 20.09.2015.
  9. Корпачёв В.Г., Лысенков С.П., Телль Л.З. Моделирование клинической смерти и постреанимационной болезни у крыс. Патол. физиол. и эксперим. терап. 1982; 3: 78-80.
  10. Дубинина Е.Е. Продукты метаболизма кислорода в функциональной активности клеток (жизнь и смерть, созидание и разрушение). Физиологические и клинико-биохимические аспекты. СПб.: Медицинская пресса. 2006; 397 с.
  11. Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н. Методы оценки свободнорадикального окисления и антиоксидантной системы организма. Методические рекомендации. СПб.: Фолиант. 2000; 104 с.
  12. Зенков Н.К., Ланкин В.З., Меньщикова Е.Б. Окислительный стресс. Биохимический и патофизиологический аспекты. М.: МАИК «Наука/Интерпериодика». 2001; 343 с.
  13. Tsvetkov A.S., Samsonov S.A., Akhmanova A. et al. Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell. Motil. Cytoskeleton. 2007; 64: 519-530. doi: 10.1002/cm.20201.
  14. Miyata T., De Strihou C., Kurokawa K. Alterations in nonenzymatic biochemistry in uremia: origin and significance of «carbonyl stress» in long-term uremic complications. Kidney Int. 1999; 55 (2): 389-399. doi: 10.1046/j.1523-1755.1999.00302.x.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Байбурина Г.А., Нургалеева Е.А., Аглетдинов Э.Ф., Самигуллин А.Ф., 2017

Creative Commons License

Эта статья доступна по лицензии
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 75008 от 01.02.2019.