Возможности применения мезенхимальных стволовых клеток, полученных из аутологичной микрофрагментированной жировой ткани, в лечении остеоартроза
- Авторы: Белобородов В.А.1, Степанов И.А.1,2, Маньков А.В.1, Соколова С.В.1, Фролов А.П.1
-
Учреждения:
- Иркутский государственный медицинский университет
- Харлампиевская клиника
- Раздел: Обзоры
- Статья получена: 04.02.2025
- Статья одобрена: 22.05.2025
- Статья опубликована: 21.07.2025
- URL: https://kazanmedjournal.ru/kazanmedj/article/view/653441
- DOI: https://doi.org/10.17816/KMJ653441
- EDN: https://elibrary.ru/YKELGC
- ID: 653441
Цитировать
Полный текст



Аннотация
В настоящее время регенеративная медицина набирает всё большую популярность в лечении пациентов с остеоартрозом. В основе регенеративного лечения остеоартрита лежит восстановление суставного хряща. Для регенерации суставного хряща применяются различные хирургические процедуры, имеющие ограниченную клиническую эффективность. Мезенхимальные стволовые клетки принято считать перспективным источником для регенерации суставного хряща из-за их способности дифференцироваться в хрящевые и костные клетки и секретировать трофические факторы с регенеративными функциями. Мезенхимальные стволовые клетки жировой ткани легко изолируются и особенно доступны из подкожной жировой клетчатки. В статье описаны способы получения аутологичной микрофрагментированной жировой ткани со стромально-васкулярной фракцией, содержащей мезенхимальные стволовые клетки, их преимущества и недостатки. Авторами работы предпринята попытка объединения результатов исследований, которые посвящены изучению клинической эффективности и безопасности применения аутологичной микрофрагментированной жировой ткани со стромально-васкулярной фракцией, содержащей мезенхимальные стволовые клетки, у пациентов с остеоартрозом. Необходимо проведение дальнейших долгосрочных рандомизированных контролируемых исследований с целью детального анализа эффективности и безопасности применения мезенхимальных стволовых клеток жировой ткани в лечении пациентов с остеоартрозом.
Об авторах
Владимир Анатольевич Белобородов
Иркутский государственный медицинский университет
Email: BVA555@yandex.ru
ORCID iD: 0000-0002-3299-1924
SPIN-код: 5116-0931
д-р мед. наук, профессор, заведующий, каф. общей хирургии
Россия, г. ИркутскИван Андреевич Степанов
Иркутский государственный медицинский университет; Харлампиевская клиника
Автор, ответственный за переписку.
Email: edmoilers@mail.ru
ORCID iD: 0000-0001-9039-9147
SPIN-код: 5485-6316
ассистент, каф. общей хирургии
Россия, г. ИркутскАлександр Викторович Маньков
Иркутский государственный медицинский университет
Email: man-aleksandrv@yandex.ru
ORCID iD: 0000-0001-8701-6432
SPIN-код: 7135-2828
канд. мед. наук, доцент, заведующий, каф. анестезиологии-реаниматологии
Россия, г. ИркутскСветлана Викторовна Соколова
Иркутский государственный медицинский университет
Email: soksv@bk.ru
ORCID iD: 0000-0003-1153-0683
SPIN-код: 2293-8820
канд. мед. наук, доцент, каф. факультетской хирургии и урологии
Россия, г. ИркутскАлександр Петрович Фролов
Иркутский государственный медицинский университет
Email: frolovphd@mail.ru
ORCID iD: 0000-0002-3453-548X
SPIN-код: 4335-2400
канд. мед. наук, доцент, каф. общей хирургии
Россия, г. ИркутскСписок литературы
- Clinical recommendations. Rheumatology. Moscow: GETOAR-Media; 2024. 752 p. (In Russ.) doi: 10.33029/9704-8649-8-KRR-2024-1-752 ISBN: 978-5-9704-8649-8 EDN: HKHQKC
- Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet. 2015;386(9991):376–387. doi: 10.1016/S0140-6736(14)60802-3 EDN: UOKWET
- Abramoff B, Caldera FE. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am. 2020;104(2):293–311. doi: 10.1016/j.mcna.2019.10.007 EDN: AEBIAS
- Xia B, Di Chen, Zhang J, et al. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int. 2014;95(6):495–505. doi: 10.1007/s00223-014-9917-9 EDN: UKMAFQ
- Taruc-Uy RL, Lynch SA. Diagnosis and treatment of osteoarthritis. Prim Care. 2013;40(4):821–827. doi: 10.1016/j.pop.2013.08.003 EDN: SOLORZ
- Barnett R. Osteoarthritis. Lancet. 2018;391(10134):1985. doi: 10.1016/S0140-6736(18)31064-X
- Vincent TL, Alliston T, Kapoor M, et al. Osteoarthritis Pathophysiology: Therapeutic Target Discovery may Require a Multifaceted Approach. Clin Geriatr Med. 2022;38(2):193–219. doi: 10.1016/j.cger.2021.11.015 EDN: SJEIWS
- Hale D, Marshall K. Osteoarthritis. Home Healthc Now. 2023;41(5):282. doi: 10.1097/NHH.0000000000001199 EDN: XTJNFY
- Vincent TL. Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum. 2019;49(3S):36–38. doi: 10.1016/j.semarthrit.2019.09.018
- Jiang Y. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage. 2022;30(2):207–215. doi: 10.1016/j.joca.2021.11.009 EDN: SPUUBH
- Wehling P, Evans C, Wehling J, Maixner W. Effectiveness of intra-articular therapies in osteoarthritis: a literature review. Ther Adv Musculoskelet Dis. 2017;9(8):183–196. doi: 10.1177/1759720X17712695
- Sakata K, Furumatsu T, Abe N, et al. Histological analysis of failed cartilage repair after marrow stimulation for the treatment of large cartilage defect in medial compartmental osteoarthritis of the knee. Acta Med Okayama. 2013;67(1):65–74. doi: 10.18926/AMO/49259
- Vinatier C, Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann Phys Rehabil Med. 2016;59(3):139–144. doi: 10.1016/j.rehab.2016.03.002
- Platas J, Guillén MI, Pérez Del Caz MD, et al. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging. 2016;8(8):1703–1717. doi: 10.18632/aging.101007
- Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–427. doi: 10.1016/j.cytogfr.2009.10.002
- Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi: 10.1089/107632701300062859 EDN: YJICBV
- Wang H, Yan X, Jiang Y, et al. The human umbilical cord stem cells improve the viability of OA degenerated chondrocytes. Mol Med Rep. 2018;17(3):4474–4482. doi: 10.3892/mmr.2018.8413
- Chen HT, Lee MJ, Chen CH, et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med. 2012;16(3):582–593. doi: 10.1111/j.1582-4934.2011.01335.x
- Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48(12):3464–3474. doi: 10.1002/art.11365 EDN: XREUSQ
- Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26(6):664–675. doi: 10.1002/cbf.1488
- Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25(4):818–827. doi: 10.1634/stemcells.2006-0589 EDN: MKHCLH
- Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi: 10.1089/107632701300062859 EDN: YJICBV
- Palumbo P, Lombardi F, Siragusa G, et al. Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview. Int J Mol Sci. 2018;19(7):1897. doi: 10.3390/ijms19071897 EDN: VIKOZP
- Strioga M, Viswanathan S, Darinskas A, et al. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21(14):2724–2752. doi: 10.1089/scd.2011.0722 EDN: RLHUDB
- Ferraro GA, De Francesco F, Nicoletti G, et al. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem. 2013;114(5):1039–1049. doi: 10.1002/jcb.24443 EDN: RNYHFN
- D'Andrea F, De Francesco F, Ferraro GA, et al. Large-scale production of human adipose tissue from stem cells: a new tool for regenerative medicine and tissue banking. Tissue Eng Part C Methods. 2008;14(3):233–142. doi: 10.1089/ten.tec.2008.0108
- Nicoletti GF, De Francesco F, D'Andrea F, Ferraro GA. Methods and procedures in adipose stem cells: state of the art and perspective for translation medicine. J Cell Physiol. 2015;230(3):489–495. doi: 10.1002/jcp.24837
- Pagani S, Veronesi F, Giavaresi G, et al. Autologous Protein Solution Effect on Chondrogenic Differentiation of Mesenchymal Stem Cells from Adipose Tissue and Bone Marrow in an Osteoarthritic Environment. Cartilage. 2021;13(2):225–237. doi: 10.1177/1947603521993217 EDN: DCJPPP
- Gaut C, Sugaya K. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage. Regen Med. 2015;10(5):665–679. doi: 10.2217/rme.15.31 EDN: UQKPWL
- Trumbull A, Subramanian G, Yildirim-Ayan E. Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells. Biomed Eng Online. 2016;15:43. doi: 10.1186/s12938-016-0150-9 EDN: BVDCZG
- de Girolamo L, Lucarelli E, Alessandri G, et al. Mesenchymal stem/stromal cells: a new ''cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des. 2013;19(13):2459–2473. doi: 10.2174/1381612811319130015 EDN: XZJMMP
- De Francesco F, Mannucci S, Conti G, et al. A Non-Enzymatic Method to Obtain a Fat Tissue Derivative Highly Enriched in Adipose Stem Cells (ASCs) from Human Lipoaspirates: Preliminary Results. Int J Mol Sci. 2018;19(7):2061. doi: 10.3390/ijms19072061
- Yano K, Speidel AT, Yamato M. Four Food and Drug Administration draft guidance documents and the REGROW Act: A litmus test for future changes in human cell- and tissue-based products regulatory policy in the United States? J Tissue Eng Regen Med. 2018;12(7):1579–1593. doi: 10.1002/term.2683
- Ferguson RE, Cui X, Fink BF, et al. The viability of autologous fat grafts harvested with the LipiVage system: a comparative study. Ann Plast Surg. 2008;60(5):594–597. doi: 10.1097/SAP.0b013e31817433c5
- Zhu M, Cohen SR, Hicok KC, et al. Comparison of three different fat graft preparation methods: gravity separation, centrifugation, and simultaneous washing with filtration in a closed system. Plast Reconstr Surg. 2013;131(4):873–880. doi: 10.1097/PRS.0b013e31828276e9
- Fang C, Patel P, Li H, et al. Physical, Biochemical, and Biologic Properties of Fat Graft Processed via Different Methods. Plast Reconstr Surg Glob Open. 2020;8(8):e3010. doi: 10.1097/GOX.0000000000003010 EDN: LNTIYX
- De Fazio D, Cingozoglu CAC. Combined Mastopexy and Augmentation with Autologous Fat Grafting: First Results with Lipopexy. Plast Reconstr Surg Glob Open. 2020;8(2):e1957. doi: 10.1097/GOX.0000000000001957 EDN: PWLTGO
- Bianchi F, Maioli M, Leonardi E, et al. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant. 2013;22(11):2063–2077. doi: 10.3727/096368912X657855
- Vezzani B, Shaw I, Lesme H, et al. Higher Pericyte Content and Secretory Activity of Microfragmented Human Adipose Tissue Compared to Enzymatically Derived Stromal Vascular Fraction. Stem Cells Transl Med. 2018;7(12):876–886. doi: 10.1002/sctm.18-0051
- Randelli P, Menon A, Ragone V, et al. Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability. Stem Cells Int. 2016;2016:4373410. doi: 10.1155/2016/4373410 EDN: WPFGID
- Jones IA, Wilson M, Togashi R, et al. A randomized, controlled study to evaluate the efficacy of intra-articular, autologous adipose tissue injections for the treatment of mild-to-moderate knee osteoarthritis compared to hyaluronic acid: a study protocol. BMC Musculoskelet Disord. 2018;19(1):383. doi: 10.1186/s12891-018-2300-7 EDN: EUTDNL
- Dai Prè E, Busato A, Mannucci S, et al. In Vitro Characterization of Adipose Stem Cells Non-Enzymatically Extracted from the Thigh and Abdomen. Int J Mol Sci. 2020;21(9):3081. doi: 10.3390/ijms21093081 EDN: KVPBWR
- Raposio E, Caruana G, Petrella M, et al. A Standardized Method of Isolating Adipose-Derived Stem Cells for Clinical Applications. Ann Plast Surg. 2016;76(1):124–126. doi: 10.1097/SAP.0000000000000609
- Domenis R, Lazzaro L, Calabrese S, et al. Adipose tissue derived stem cells: in vitro and in vivo analysis of a standard and three commercially available cell-assisted lipotransfer techniques. Stem Cell Res Ther. 2015;6(1):2. doi: 10.1186/scrt536 EDN: CBYVKV
- Senesi L, De Francesco F, Farinelli L, et al. Mechanical and Enzymatic Procedures to Isolate the Stromal Vascular Fraction From Adipose Tissue: Preliminary Results. Front Cell Dev Biol. 2019;7:88. doi: 10.3389/fcell.2019.00088
- Busato A, De Francesco F, Biswas R, et al. Simple and Rapid Non-Enzymatic Procedure Allows the Isolation of Structurally Preserved Connective Tissue Micro-Fragments Enriched with SVF. Cells. 2020;10(1):36. doi: 10.3390/cells10010036 EDN: IPFXZP
- Yin K, Wang S, Zhao RC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res. 2019;7:8. doi: 10.1186/s40364-019-0159-x EDN: SKBNYQ
- Isola AL, Chen S. Exosomes: The Messengers of Health and Disease. Curr Neuropharmacol. 2017;15(1):157–165. doi: 10.2174/1570159x14666160825160421
- Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–1266. doi: 10.1002/stem.1634
- Jo CH, Chai JW, Jeong EC, et al. Intra-articular Injection of Mesenchymal Stem Cells for the Treatment of Osteoarthritis of the Knee: A 2-Year Follow-up Study. Am J Sports Med. 2017;45(12):2774–2783. doi: 10.1177/0363546517716641
- Spasovski D, Spasovski V, Baščarević Z, et al. Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J Gene Med. 2018;20(1). doi: 10.1002/jgm.3002
- Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10(3):199–206. doi: 10.1053/joca.2001.0504
- Hindle P, Khan N, Biant L, Pйault B. The Infrapatellar Fat Pad as a Source of Perivascular Stem Cells with Increased Chondrogenic Potential for Regenerative Medicine. Stem Cells Transl Med. 2017;6(1):77–87. doi: 10.5966/sctm.2016-0040
- Muсoz-Criado I, Meseguer-Ripolles J, Mellado-Lуpez M, et al. Human Suprapatellar Fat Pad-Derived Mesenchymal Stem Cells Induce Chondrogenesis and Cartilage Repair in a Model of Severe Osteoarthritis. Stem Cells Int. 2017;2017:4758930. doi: 10.1155/2017/4758930 EDN: YGGEBU
- Pers YM, Rackwitz L, Ferreira R, et al; ADIPOA Consortium. Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Transl Med. 2016;5(7):847–856. doi: 10.5966/sctm.2015-0245
- Song Y, Du H, Dai C, et al. Human adipose-derived mesenchymal stem cells for osteoarthritis: a pilot study with long-term follow-up and repeated injections. Regen Med. 2018;13(3):295–307. doi: 10.2217/rme-2017-0152 EDN: YHWQDB
- Zhang S, Xu H, He B, et al. Mid-term prognosis of the stromal vascular fraction for knee osteoarthritis: a minimum 5-year follow-up study. Stem Cell Res Ther. 2022;13(1):105. doi: 10.1186/s13287-022-02788-1 EDN: ESHBFN
- Boada-Pladellorens A, Avellanet M, Pages-Bolibar E, Veiga A. Stromal vascular fraction therapy for knee osteoarthritis: a systematic review. Ther Adv Musculoskelet Dis. 2022;14:1759720X221117879. doi: 10.1177/1759720X221117879
- Goncharov EN, Koval OA, Nikolaevich Bezuglov E, et al. Stromal Vascular Fraction Therapy for Knee Osteoarthritis: A Systematic Review. Medicina. 2023;59(12):2090. doi: 10.3390/medicina59122090 EDN: GPQHPE
Дополнительные файлы
