Применение ультрафиолетового кросслинкинга для лечения тонких роговиц при кератоконусе



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Ультрафиолетовый кросслинкинг роговичного коллагена — оригинальная технология, направленная на повышение прочности роговицы при кератоконусе за счёт создания дополнительных перекрёстных связей в макромолекулах внеклеточного матрикса. Метод основан на облучении роговицы ультрафиолетом диапазона А (370 нм) после насыщения стромы фотосенсибилизатором (рибофлавином). В стандартном (Дрезденском) протоколе — традиционной методике ультрафиолетового кросслинкинга — минимальная толщина деэпителизированной роговицы должна составлять не менее 400 мкм, чтобы избежать потенциального повреждения эндотелиальных клеток цитотоксичной дозой ультрафиолетового излучения. Однако у ряда пациентов с кератоконусом толщина роговой оболочки меньше указанного порогового значения, что ограничивает применение традиционного клинического протокола. В связи с этим были предложены модифицированные методики кросслинкинга для лечения пациентов с тонкой роговицей. В обзоре представлены различные подходы, используемые для достижения этой цели. Как правило, безопасность и эффективность модифицированных методик, в частности трансэпителиального, акселерированного, с формированием интраоперационного гипоосмотического отёка или с применением контактной линзы либо биолинзы из донорской роговицы, демонстрируют удовлетворительные результаты: в большинстве случаев удаётся остановить прогрессирование кератэктазии без серьёзных послеоперационных осложнений. Тем не менее каждый метод имеет свои преимущества и ограничения. Выбор конкретной методики зависит от возможностей клиники, индивидуальных особенностей роговицы пациента и квалификации хирурга. Следует отметить, что на практике различные методики ультрафиолетового кросслинкинга тонких роговиц применяются значительно реже, чем стандартная процедура, что обусловливает необходимость дальнейших исследований по оценке их клинической эффективности и безопасности.

Об авторах

Мухаррам Мухтарамович Бикбов

Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет

Email: niipriem@yandex.ru
ORCID iD: 0000-0002-9476-8883
SPIN-код: 4951-4615
Scopus Author ID: 6507082164
ResearcherId: AAO-7624-2021

д-р мед. наук, профессор, директор, Уфимский НИИ глазных болезней

Россия, г. Уфа

Азат Рашидович Халимов

Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет

Автор, ответственный за переписку.
Email: azrakhal@yandex.ru
ORCID iD: 0000-0001-7470-7330
SPIN-код: 7507-4450
Scopus Author ID: 57190189056
ResearcherId: AAR-3781-2021

д-р биол. наук, заведующий, научно-инновационный отдел

Россия, г. Уфа

Александр Эдуардович Бабушкин

Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет

Email: virologicdep@mail.ru
ORCID iD: 0000-0001-6700-0812
SPIN-код: 6146-0472
Scopus Author ID: 7006115027

д-р мед. наук, заведующий, отдел организации научных исследований и разработок Уфимского НИИ глазных болезней

Россия, г. Уфа

Эмин Логман оглы Усубов

Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет

Email: emines.us@inbox.ru
ORCID iD: 0000-0002-1008-1516
SPIN-код: 5265-2311
ResearcherId: MBV-9533-2025

канд. мед. наук, заведующий, отдел хирургии роговицы и хрусталика Уфимского НИИ глазных болезней

Россия, г. Уфа

Список литературы

  1. Bikbov MM, Bikbova GM. Corneal ectasia. Moscow: Ophthalmology; 2011. 162 p. ISBN: 978-5-94289-056-8 EDN: QMBMML
  2. Singh RB, Koh S, Sharma N, et al. Keratoconus. Nat Rev Dis Primers. 2024;10(1):81. doi: 10.1038/s41572-024-00565-3 EDN: DNLTQI
  3. Deshmukh R, Ong Z, Rampat R, et al. Management of keratoconus: an updated review. Front Med. 2023:10:1212314. doi: 10.3389/fmed.2023.1212314 EDN: ABNFWQ
  4. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–627. doi: 10.1016/s0002-9394(02)02220-1
  5. Zotov VV, Pashtaev NP, Pozdeeva NA. Corneal collagen cross-linking for keratoconus. Russian Annals of Ophthalmology. 2015;131(4):88–93. doi: 10.17116/oftalma2015131488-93
  6. Hafezi F, Kling S, Hafezi NL, et al. Corneal cross-linking. Prog Retin Eye Res. 2025:104:101322. doi: 10.1016/j.preteyeres.2024.101322 EDN: VNKSJQ
  7. Yang Q, Wang S, He Y, Zhang Y. The research progress on the molecular mechanism of corneal cross-linking in keratoconus treatment. Cont Lens Anterior Eye. 2023;46(2):101795. doi: 10.1016/j.clae.2022.101795 EDN: XFANVQ
  8. Bikbov MM, Khalimov AR, Usubov EL. Ultraviolet Corneal Crosslinking. Annals of the Russian Academy of Medical Sciences. 2016;71(3):224–232. doi: 10.15690/vramn562 EDN: WCZIDJ
  9. Deshmukh R, Hafezi F, Kymionis GD, et al. Current concepts in crosslinking thin corneas. Indian J Ophthalmol. 2019;67(1):8–15. doi: 10.4103/ijo.IJ0_1403_18 EDN: MEALGN
  10. Felter E, Khoramnia R, Friedrich M, et al. Biomechanical changes following corneal crosslinking in keratoconus patients. Graefes Arch Clin Exp Ophthalmol. 2024;262(11):3635–3642. doi: 10.1007/s00417-024-06549-z EDN: VNWSQY
  11. Eser NA, Dikmetas O, Kocabeyoglu S, et al. Evaluation of Keratoconus Disease with Tear Cytokine and Chemokine Levels Before and After Corneal Cross-Linking Treatment. Ocul Immunol Inflamm. 2024;32(3):269–275. doi: 10.1080/09273948.2023.2165950
  12. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye. 2004;18:718–722. doi: 10.1038/sj.eye.6700751
  13. Padmanabhan P. Collagen cross-linking in thin corneas. Indian J Ophthalmol. 2013;61(8):422–424. doi: 10.4103/0301-4738.116073
  14. Kling S, Hafez F. Corneal Cross-Linking (CXL) In Thin Corneas: Theory, Experiments And Clinical Application. Point of view. East - West. 2017;1:17–19. EDN: YRUUZN
  15. Parker JS, van Dijk K, Melles GRJ. Treatment options for advanced keratoconus: A review. Surv Ophthalmol. 2015;60(5):459–480. doi: 10.1016/j.survophthal.2015.02.004
  16. Han Y, Xu Y, Zhu W, et al. Thinner corneas appear to have more striking effects of corneal collagen crosslinking in patients with progressive keratoconus. J Ophthalmol. 2017;2017:6490915. doi: 10.1155/2017/6490915
  17. Greenstein SA, Hersh PS. Update on corneal crosslinking for keratoconus and corneal ectasia. Curr Opin Ophthalmol. 2024;35(4):273–277. doi: 10.1097/ICU.0000000000001056 EDN: HGUQIZ
  18. Karamichos D, Nicholas SE, Khan A, Riaz KM. Collagen Crosslinking for Keratoconus: Cellular Signaling Mechanisms. Biomolecules. 2023;13(4):696. doi: 10.3390/biom13040696 EDN: OXOJVE
  19. Hafezi F. Corneal Cross-linking for Keratoconus: Exploring the Issues Regarding Accelerated Protocols and Thin Corneas. J Ophthalmic Vis Res. 2021;16(3):314–316. doi: 10.18502/jovr.v16i3.9425 EDN: THBHGE
  20. Cantemir A, Alexa A, Galan B, et al. Outcomes of iontophoretic corneal collagen crosslinking in keratoconic eyes with very thin corneas. Medicine Baltimore. 2017;96(47):e8758. doi: 10.1097/MD.0000000000008758 EDN: YEGTRZ
  21. Anisimova NS, Anisimov SI, Shilova NF, et al. Ultraviolet crosslinking in the treatment of keratoconus in patients with thin corneas. Russian Annals of Ophthalmology. 2020;136(2):99–106. doi: 10.17116/oftalma202013602199 EDN: NYRHJW
  22. Bikbov MM, Rusakova IuA, Usubov EL, Rakhimova EM. Crosslinking of Thin Corneas: a Modern Vision of the Problem. Literature Review. Acta biomedica scientifica. 2020;5(5):73–80. doi: 10.29413/ABS.2020-5.5.10 EDN: IOMYTS
  23. Tereshchenko AV, Trifanenkova IG, Golubeva YuYu, et al. Ultraviolet crosslinking of corneal collagen in patients with thin cornea. Literature review. Acta biomedica scientifica. 2021;6(6-1):229–236. doi: 10.29413/ABS.2021-6.6-1.26 EDN: BBIYGA
  24. Tereshchenko AV, Trifanenkova IG, Demianchenko SK, et al. Alternative methods of surgical treatment of keratoconus. Russian Annals of Ophthalmology. 2024;140(2):85–90. doi: 10.17116/oftalma202414002185 EDN: NLAQUF
  25. Borgardts K, Menzel-Severing J, Fischinger I, et al. Innovations in Corneal Crosslinking. Curr Eye Res. 2023;48(2):144–151. doi: 10.1080/02713683.2022.2146725 EDN: NBRTZI
  26. Franke MA, Landes T, Seiler T, et al. Corneal riboflavin gradients and UV-absorption characteristics after topical application of riboflavin in concentrations ranging from 0.1 to 0.5. Exp Eye Res. 2021;213:108842. doi: 10.1016/j.exer.2021.108842 EDN: GFLHUN
  27. Koppen C, Wouters K, Mathysen D, et al. Refractive and topographic results of benzalkonium chloride-assisted transepithelial crosslinking. J Cataract Refract Surg. 2012;38:1000–1005. doi: 10.1016/j.jcrs.2012.01.024
  28. Patent RUS № 175231 U1/ 11.28.2017. Bikbov MM, Usubov EL, Khalimov AR, et al. Device for corneal ionophoresis. (In Russ.) EDN: NWTXSL
  29. D'Oria F, Palazуn A, Alio JL. Corneal collagen cross-linking epithelium-on vs. epithelium-off: a systematic review and meta-analysis. Eye Vis. 2021;8(1):34. doi: 10.1186/s40662-021-00256-0 EDN: WXLJFE
  30. Soeters N, Wisse RP, Godefrooij DA, et al. Transepithelial versus epithelium off corneal cross-linking for the t reatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol. 2015;159:821–828. doi: 10.1016/j.ajo.2015.02.005 EDN: UONNNB
  31. Spadea L, Mencucci R. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas. Clin Ophthalmol. 2012;6:1785–1792. doi: 10.2147/opth.s37335
  32. Lin ZR, Wu HP, Luo SR, et al. Accelerated transepithelial corneal collagen crossinking for progressive keratoconus with a thin cornea: one-year results. Zhonghua Yan Ke Za Zhi. 2017;53(9):694–700. (In Chinese) doi: 10.3760/cma.j.issn.0412-4081.2017.09.011
  33. Khalimov AR. Precorneal riboflavin film in the corneal ultraviolet crosslinking system. ex vivo research. Medical Bulletin of Bashkortostan. 2017;12(1):65–68. EDN: YFUHNF
  34. Torres-Netto EA, Kling S, Hafezi N, et al. Oxygen diffusion may limit the biomechanical effectiveness of iontophoresis-assisted transepithelial corneal crossinking. J Refract Surg. 2018;34:768–774. doi: 10.3928/1081597X-20180830-01 EDN: WZOOOX
  35. Abdelkader SMH, Fernandez J, Rodrнguez-Vallejo M, et al. Comparison of Different Methods of Corneal Collagen Crosslinking: A Systematic Review. Semin Ophthalmol. 2021;36(3):67–74. doi: 10.1080/08820538.2021.1890784 EDN: GSNKEZ
  36. Vilares-Morgado R, Ferreira AM, Cunha AM, et al. Transepithelial Accelerated Crosslinking for Progressive Keratoconus: A Critical Analysis of Medium-Term Treatment Outcomes. Clin Ophthalmol. 2024;18:393–407. doi: 10.2147/OPTH.S450916 EDN: XEUITL
  37. Borchert GA, Kandel H, Watson SL. Epithelium-on versus epithelium-off corneal collagen crosslinking for keratoconus: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2024;262(6):1683–1692. doi: 10.1007/s00417-023-06287-8 EDN: OXCZVI
  38. Cehelyk EK, Syed ZA. Long-term outcomes of corneal crosslinking. Curr Opin Ophthalmol. 2024;35(4):315–321. doi: 10.1097/ICU.0000000000001054 EDN: IVBEDH
  39. Ahmad I, Gul N, Khan B, et al. Efficacy of transepithelial accelerated collagen cross linking in stopping the progression of keratoconus. J Ayub Med Coll Abbottabad. 2024;36(2):284–288. doi: 10.55519/JAMC-02-12672 EDN: PKIWMW
  40. Mazzotta C, Ramovecchi V. Customized epithelial debridement for thin ectatic corneas undergoing corneal cross-linking: epithelial island crosslinking technique. Clin Ophthalmol. 2014;8:1337–1343. doi: 10.2147/opth.s66372
  41. Cagil N, Can GD, Sarac O, Can ME. Outcomes of corneal collagen сrosslinking using a customized epithelial debridement technique in keratoconic eyes with thin corneas. Int Ophthalmol. 2017;37(1):103–109. doi: 10.1007/s10792-016-0234-3
  42. Ocak SY, Mangan MS, Elзioрlu MN. The Intraoperative Corneal Pachymetry Changes during Accelerated Corneal Cross-linking in Progressive Keratoconus Patients with Thin Corneas. Korean J Ophthalmol. 2021;35(6):438–442. doi: 10.3341/kjo.2021.0111 EDN: TDRVRY
  43. Samaras K, O'Brart DP, Doutch J, et al. Effect of epithelial retention and removal on riboflavin absorption in porcine corneas. J Refract Surg. 2009;25:771–775. doi: 10.3928/1081597X-20090813-03
  44. Anisimov SI, Anisimova SY, Mistryukov AS. Personalized (Local) UV-Crosslinking as a treatment of Keratoconus and corneal ectasia. Oftalmologia. 2017;14:195–199. doi: 10.18008/1816-5095-2017-3-195-199 EDN: ZHNPSL
  45. Сhoi M, Kim J, Kim EK, et al. Comparison of the Conventional Dresden Protocol and Accelerated Protocol With Higher Ultraviolet Intensity in Corneal Collagen Cross-Linking for Keratoconus. Cornea. 2017;36(5):523–529. doi: 10.1097/ICO.0000000000001165 EDN: YYEFLB
  46. Usubov EL, Mukhamadieva SR. Prospects for the development of corneal crosslinking technology (literature review). Point of view. East - West. 2018;1:130–132. doi: 10.25276/2410-1257-2018-1-130-132 EDN: XQJLPN
  47. Ozgurhan EB, Akcay BI, Kurt T, et al. Accelerated corneal collagen cross-linking in thin keratoconic corneas. J Refract Surg. 2015;31:386–390. doi: 10.3928/1081597X-20150521-11
  48. Kling S, Hafezi F. Biomechanical stiffening: Slow low-irradiance corneal crosslinking versus the standart Dresden protocol. J Cataract Refract Surg. 2017;43(7):975–979. doi: 10.1016/j.jcrs.2017.04.041
  49. Usubov EL, Khalimova LI. Localization of the stroma demarcation line after continuous and pulsed accelerated UV corneal crosslinking in patients with keratoconus. Modern technologies in ophthalmology. 2020;4(35):83–84. doi: 10.25276/2312-4911-2020-4-83-84 EDN: SBBQXE
  50. Knyazer B, Kormas RM, Chorny A, et al. Corneal Cross-linking in Thin Corneas: 1-Year Results of Accelerated Contact Lens-Assisted Treatment of Keratoconus. J Refract Surg. 2019;35(10):642–648. doi: 10.3928/1081597X-20190903-01
  51. Bikbov MM, Rusakova YuA, Usubov EL, Rakhimova EM. Accelerated crosslinking in thin cornea in patients with progressive keratoconus. Preliminary results. Point of view. East -West. 2020;2:9–13. doi: 10.25276/2410-1257-2020-2-9-13 EDN: NOSHMC
  52. Mazzotta C, Jacob S, Agarwal A, Kumar DA. In vivo confocal microscopy after contact lense-assisted corneal collagen cross-linking for thin keratoconic corneas. J Refract Surg. 2016;32(5):326–331. doi: 10.3928/1081597X-20160225-04
  53. Srivatsa S, Jacob S, Agarwal A. Contact lens assisted corneal cross linking in thin ectatic corneas — A review. Indian J Ophthalmol. 2020;68(12):2773–2778. doi: 10.4103/ijo.IJO_2138_20 EDN: YJBSUY
  54. Nour MM, El-Agha MH, Sherif AM, Shousha SM. Efficacy and Safety of Contact Lens-Assisted Corneal Crosslinking in the Treatment of Keratoconus With Thin Corneas. Eye Contact Lens. 2021;47(9):500–504. doi: 10.1097/ICL.0000000000000799 EDN: GKSERF
  55. Safalэ F, Ocak SY, Argon BD, et al. Evaluation of the results of contact lens assisted corneal cross-linking treatment in keratoconus patients with thin corneas. Jpn J Ophthalmol. 2024;68(3):225–232. doi: 10.1007/s10384-024-01055-5 EDN: ACESVL
  56. Patent RUS № 2735377 C1/ 10.30.2020. Bikbov MM, Khalimov AR, Kazakbayeva GM, et al. Method of ultraviolet corneal crosslinking taking into account topographic pachymetry and keratotopography in patients with thin cornea. EDN: XRIYTC
  57. Chen X, Stojanovic A, Eidet JR, Utheim TP. Corneal collagen cross-linking (CXL) in thin corneas. Eye and Vision. 2015;2:1–7. doi: 10.1186/s40662-015-0025-3 EDN: PRWABU
  58. Sachdev MS, Gupta D, Sachdev G, Sachdev R. Tailored stroma; expansion with a refractive lenticule for crosslinking the ultrathin cornea. J Cataract Refract Surg. 2015;41:918–923. doi: 10.1016/j.jcrs.2015.04.007
  59. Ganesh S, Brar S. Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus - initial clinical result in 6 eyes. Cornea. 2015;10:86–95. doi: 10.1097/ico.0000000000000539
  60. Vasilyeva IV, Egorov VV, Vasilyev AB. Analysis of the effectiveness and safety of corneal collagen crosslinking in patients with a corneal thickness of less than 400 microns after deepithelization using a donor corneal lenticule. Practical medicine. 2017;1:9(110):25–28. EDN: ZITNEP
  61. Patent RUS № 2739995 C1/ 12.30.2020. Bikbov MM, Khalimov AR, Usubov ELO, Rusakova YuA. A method for conducting ultraviolet corneal crosslinking using biolinses for thin corneas. EDN: SZDYWD
  62. Bikbov MM, Кhalimov AR, Surkova VK, Kazakbaeva GM. Estimation of corneal thickness ex vivo and in vivo at instillation of photosensitizer solutions in different modifications of UV corneal crosslinking. RUDN Journal of Medicine. 2021;25(2):96–105. doi: 10.22363/2313-0245-2021-25-2-96-105 EDN: YMRTFE
  63. Koc M, Uzel MM, Koban Y, et al. Accelerated corneal cross-linking with a hypoosmolar riboflavin solution in keratoconic thin cornea: short-term results. Cornea. 2016;35:350–354. doi: 10.1097/ico.0000000000000701
  64. Patent RUS № 2631604 C1/ 09.25.2017. Bikbov MM, Khalimov AR, Bikbova GM, et al. A hypoosmotic ophthalmic agent for ultraviolet crosslinking of thin corneas. EDN: NSIWWD
  65. Buyuktepe TC, Ucakhan ОО. Long-term visual, refractive, tomographic and aberrometric outcomes of corneal collagen crosslinking (CXL) with or without hypoosmolar riboflavin solution in the treatment of progressive keratoconus patients with thin corneas. Graefes Arch Clin Exp Ophthalmol. 2022;260(4):1225–1235. doi: 10.1007/s00417-021-05314-w EDN: MHGYQK
  66. Abbondanza M, Wong ZSY, De Felice V, Abbondanza G. Customised Peripheral Corneal Cross-linking (P-CXL) for Ultra-thin Corneas with Stage III and IV Keratoconus. Semin Ophthalmol. 2023;38(7):630–637. doi: 10.1080/08820538.2023.2179407 EDN: HKLTPO
  67. Gu S-F, Fan Z-S, Wang L-H, et al. A short-term study of corneal collagen crossinking with hypo-osmolar riboflavin solution in keratoconic corneas. Int J Ophthalmol. 2015;8:94–97. doi: 10.3980%2Fj.issn.2222-3959.2015.01.17.
  68. Ocak YS, Mangan MS. Endothelial cell loss after accelerated corneal crosslinking using pachymetry-guided hypo-osmolar riboflavin dosing in thin keratoconic corneas. J Cataract Refract Surg. 2021;47(12):1530–1534. doi: 10.1097/j.jcrs.0000000000000686 EDN: TDHLKB
  69. Hafezi F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: failure in an extremely thin cornea. Cornea. 2011;30:917–919. doi: 10.1097/ico.0b013e31820143d1
  70. Ahearne M, Yang Y, Then KY, Liu KK. Non-destructive mechanical characterisation of UVA/riboflavin crosslinked collagen hydrogels. Br J Ophthalmol. 2008;92:268–271. doi: 10.1136/bjo.2007.130104
  71. Wollensak G, Spцrl E. Biomechanical efficacy of corneal cross-linking using hypoosmolar riboflavin solution. Eur J Ophthalmol. 2019;29(5):474–481. doi: 10.1177/1120672118801130
  72. Celik-Buyuktepe T, Ucakhan OO. Comparative Evaluation of Anterior Segment Optical Coherence Tomography Findings Following Accelerated Corneal Crosslinking Protocols Using Different Riboflavin Formulations and Soaking Durations. Curr Eye Res. 2025;50(1):32–40. doi: 10.1080/02713683.2024.2385441
  73. Gustafsson I, Olafsdottir T, Neumann О, et al. Early findings in a randomised controlled trial on crosslinking protocols using isoosmolar and hypoosmolar riboflavin for the treatment of progressive keratoconus. Acta Ophthalmol. 2025;103(1):23–32. doi: 10.1111/aos.16736 EDN: WSUZBY

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025


СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 75008 от 01.02.2019.