Современные методы интраоперационной диагностики локализации паращитовидных желез



Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Гиперпаратиреоз — распространённое эндокринное заболевание, часто протекающее с выраженной симптоматикой. Первичный гиперпаратиреоз обусловлен аденомой паращитовидных желез, тогда как вторичный и третичный развиваются у пациентов с хронической почечной недостаточностью, находящихся на программном гемодиализе. На современном этапе лекарственная терапия вторичного гиперпаратиреоза с применением цинокальцета демонстрирует высокий и продолжительный эффект. Однако при третичном и первичном гиперпаратиреозе единственным радикальным методом лечения остаётся хирургическое удаление патологически изменённых паращитовидных желез. При полигландулярных формах первичного, а особенно третичного гиперпаратиреоза, проведение паратиреоидэктомии требует максимально точной диагностики паращитовидных и щитовидной желез, а также близлежащих структур. Несмотря на развитие дооперационных топических и функциональных методов диагностики, точная локализация изменённых паращитовидных желез у половины пациентов остаётся неизвестной до момента хирургического вмешательства. Существующие методики открытой визуализации парашитовидных желез — интраоперационное ультразвуковое исследование, гамма-детекция, окрашивание метиленовой синью — продемонстрировали ограниченные возможности. Флуоресцентные методы с использованием индоцианин-зелёного, аминолевулановой кислоты и различных вариантов аутофлуоресценции показали высокую эффективность по данным авторов. Однако их широкое применение сдерживается высокой стоимостью оборудования, а также трудностями воспроизведения методики и достижения заявленных результатов. В этой связи возникла необходимость совершенствования алгоритмов интраоперационной визуализации паращитовидных желез, чему и посвящён настоящий обзор.

Об авторах

Сергей Викторович Зинченко

Казанский (Приволжский) федеральный университет

Автор, ответственный за переписку.
Email: zinchenkos.v@mail.ru
ORCID iD: 0000-0002-9306-3507
SPIN-код: 5381-4389

д-р мед. наук, доцент, заведующий, каф. хирургии

Россия, г. Казань

Ильфат Зульфатович Галиев

Казанский (Приволжский) федеральный университет

Email: galiev-i-1990@mail.ru
ORCID iD: 0000-0001-8926-8799
SPIN-код: 5337-1143

старший преподаватель, каф. хирургии

Россия, г. Казань

Егор Константинович Кульбида

Казанский (Приволжский) федеральный университет

Email: egorkulbida@gmail.com
ORCID iD: 0009-0000-4826-2534
SPIN-код: 1730-4607

врач-ординатор (хирург), каф. хирургических болезней постдипломного образования

Россия, г. Казань

Кирилл Алексеевич Петухов

Казанский (Приволжский) федеральный университет

Email: kirya.kirill.petukhov@mail.ru
ORCID iD: 0009-0000-2700-5467
SPIN-код: 3507-1137

врач-ординатор (хирург), каф. хирургических болезней постдипломного образования

Россия, г. Казань

Нияз Фанусович Муратов

Казанский (Приволжский) федеральный университет

Email: n.muratov@drcito.ru
ORCID iD: 0000-0002-0825-422X
SPIN-код: 5381-4388

канд. мед. наук, доцент, каф. оториноларингологии и офтальмологии

Россия, г. Казань

Список литературы

  1. Tjahjono R, Nguyen K, Phung D, et al. Methods of identification of parathyroid glands in thyroid surgery: A literature review. ANZ J Surg. 2021;91(9):1711–1716. doi: 10.1111/ans.17117 EDN: FQBEXL
  2. Triponez F, Kebebew E, Dosseh D, et al. Less-than-subtotal parathyroidectomy increases the risk of persistent/recurrent hyperparathyroidism after parathyroidectomy in tertiary hyperparathyroidism after renal transplantation. Surgery. 2006;140(6):990–999. doi: 10.1016/j.surg.2006.06.039
  3. Rothmund M, Wagner PK, Schark C. Subtotal parathyroidectomy versus total parathyroidectomy and autotransplantation in secondary hyperparathyroidism: a randomized trial. World J Surg. 1991;15(6):745–750. doi: 10.1007/BF01665309 EDN: UULYDI
  4. Steinl GK, Kuo JH. Surgical Management of Secondary Hyperparathyroidism. Kidney Int Rep. 2020;6(2):254–264. doi: 10.1016/j.ekir.2020.11.023 EDN: GOKDAU
  5. Baj J, Sitarz R, Јokaj M, et al. Preoperative and Intraoperative Methods of Parathyroid Gland Localization and the Diagnosis of Parathyroid Adenomas. Molecules. 2020;25(7):1724. doi: 10.3390/molecules25071724 EDN: QRENDV
  6. Noureldine SI, Gooi Z, Tufano RP. Minimally invasive parathyroid surgery. Gland Surg. 2015;4(5):410–419. doi: 10.3978/j.issn.2227-684X.2015.03.07
  7. Fullerton ZH, Orloff LA. Pearls of Parathyroidectomy: How to Find the Hard to Find Ones. Otolaryngol Clin North Am. 2024;57(1):125–137. doi: 10.1016/j.otc.2023.07.004 EDN: HORCJL
  8. Judson BL, Shaha AR. Nuclear imaging and minimally invasive surgery in the management of hyperparathyroidism. J Nucl Med. 2008;49(11):1813–1818. doi: 10.2967/jnumed.107.050237
  9. Thomas G, McWade MA, Nguyen JQ, et al. Innovative surgical guidance for label-free real-time parathyroid identification. Surgery. 2019;165(1):114–123. doi: 10.1016/j.surg.2018.04.079
  10. Blanco Saiz I, Salvador Egea P, Anda Apiсбniz E, et al. Radio-guided procedure in minimally invasive surgery for primary hyperparathyroidism. Cir Esp (Engl Ed). 2023;101(3):152–159. doi: 10.1016/j.cireng.2022.09.001 EDN: RIRPLY
  11. Abreu P, Guallart F, Siscar C, et al. Comparison of intraoperative imaging with a portable gamma camera with extemporaneous histology in minimally invasive surgery for primary hyperparathyroidism. Rev Esp Med Nucl Imagen Mol (Engl Ed). 2024;43(5):500030. doi: 10.1016/j.remnie.2024.500030 EDN: ASMOQE
  12. Suбrez JP, Domнnguez ML, de Santos FJ, et al. Radioguided surgery in primary hyperparathyroidism: Results and correlation with intraoperative histopathologic diagnosis. Acta Otorrinolaringol Esp. 2018;69(2):86–94. doi: 10.1016/j.otorri.2017.04.005
  13. Rubello D, Mariani G, Pelizzo MR, et al. Minimally invasive radio-guided parathyroidectomy on a group of 452 primary hyperparathyroid patients: refinement of preoperative imaging and intraoperative procedure. Nuklearmedizin. 2007;46(3):85–92. doi: 10.1160/nukmed-0036
  14. Ceylan S, Yilmaz N. The Comparison of Low and High-Dose Scintigraphy Findings in Patients with Primary Parathyroid Lesions in which Intraoperative Gamma-Probe was Applied. Curr Med Imaging. 2023. doi: 10.2174/1573405620666230426143033 EDN: VFTEGA
  15. Epshteyn EV, Matyashchuk SI. Ultrasound scan of the thyroid glands. Atlas guide. 2nd ed. Kiev, 2004. 382 p. (In Russ.) ISBN: 978-966-7192-57-0
  16. Mit'kov VV. Clinical guidelines for ultrasound diagnostics. T. 4. Moscow, 2005. p. 120. (In Russ.)
  17. Akasu H, Igarashi T, Tanaka K, et al. Photodynamic identification of human parathyroid glands with 5-aminolevulinic acid. J Nippon Med Sch. 2006;73(5):246–247. doi: 10.1272/jnms.73.246
  18. Sleptsov IV, Bubnov AN, Chernikov RA, et al. Photodynamic visualizatioan of the parathyroid glands is the result of clinical application. Clinical and experimental thyroidology. 2009;5(1):35–40. EDN: RAQASN
  19. Kalashnikov AA, Yashin SS, Ovchinnikov EL, et al. Prevention of iatrogenic postoperative complications in thyroid and parathyroid surgery. Modern problems of science and education. 2019;(6):135. EDN: ZQFDBJ
  20. Vshivtsev DO, Shcherbakov VR, Makhmudov YuR. Intraoperative photodynamic visualization of the parathyroid glands using 5-aminolevulinic acid. News of the Russian Military Medical Academy. 2020;39(S1–1):188–191. EDN: ZPVXKN
  21. Dolidze D, Shabunin А, Vardanyan A, et al. Prophylaxis of postoperative hypoparathyroidism in thyroid surgery. Folia Med (Plovdiv). 2023;65(2):207–214. doi: 10.3897/folmed.65.e75427 EDN: LGCHGX
  22. Bewick J, Pfleiderer A. The value and role of low dose methylene blue in the surgical management of hyperparathyroidism. Ann R Coll Surg Engl. 2014;96(7):526–529. doi: 10.1308/003588414X13946184903883
  23. Lieberman ED, Thambi R, Pytynia KB. Methylene blue and parathyroid adenoma localization: Three new cases of a rare cutaneous complication. Ear Nose Throat J. 2016;95(2):70–72.
  24. Kuriloff DB, Sanborn KV. Rapid intraoperative localization of parathyroid glands utilizing methylene blue infusion. Otolaryngol Head Neck Surg. 2004;131(5):616–622. doi: 10.1016/j.otohns.2004.04.026
  25. Prosst RL, Weiss J, Hupp L, et al. Fluorescence-guided minimally invasive parathyroidectomy: clinical experience with a novel intraoperative detection technique for parathyroid glands. World J Surg. 2010;34(9):2217–2222. doi: 10.1007/s00268-010-0621-2 EDN: QOQTNJ
  26. DeLong JC, Ward EP, Lwin TM, et al. Indocyanine green fluorescence-guided parathyroidectomy for primary hyperparathyroidism. Surgery. 2018;163(2):388–392. doi: 10.1016/j.surg.2017.08.018
  27. Rudin AV, McKenzie TJ, Thompson GB, et al. Evaluation of Parathyroid Glands with Indocyanine Green Fluorescence Angiography After Thyroidectomy. World J Surg. 2019;43:1538. doi: 10.1007/s00268-019-04909-z EDN: NCCDCW
  28. Park SY, Choi YS, Hwang YM, Yi JW. Robot-Assisted Parathyroidectomy Using Indocyanine Green (ICG) Fluorescence in Primary Hyperparathyroidism. Medicina. 2023;59(8):1456. doi: 10.3390/medicina59081456 EDN: EYIGTN
  29. Battistella E, Pomba L, Toniato R, et al. Evolution of the Diagnosis and Treatment of Primary Hyperparathyroidism. J Clin Med. 2023;12(5):2057. doi: 10.3390/jcm12052057 EDN: DDLVMG
  30. Lang BH, Wong CK, Hung HT, et al. Indocyanine green fluorescence angiography for quantitative evaluation of in situ parathyroid gland perfusion and function after total thyroidectomy. Surgery. 2017;161(1):87–95. doi: 10.1016/j.surg.2016.03.037
  31. Razavi AC, Ibraheem K, Haddad A, et al. Efficacy of indocyanine green fluorescence in predicting parathyroid vascularization during thyroid surgery. Head Neck. 2019;41(9):3276–3281. doi: 10.1002/hed.25837
  32. Chakedis JM, Maser C, Brumund KT, Bouvet M. Indocyanine green fluorescence-guided redoparathyroidectomy. BMJ Case Rep. 2015;2015:bcr2015211778. doi: 10.1136/bcr-2015-211778
  33. Sound S, Okoh A, Yigitbas H, et al. Utility of Indocyanine Green Fluorescence Imaging for Intraoperative Localization in Reoperative Parathyroid Surgery. Surg Innov. 2019;26(6):774–779. doi: 10.1177/1553350615613450
  34. Mannoh EA, Baregamian N, Thomas G, et al. Comparing laser speckle contrast imaging and indocyanine green angiography for assessment of parathyroid perfusion. Sci Rep. 2023;13(1):17270. doi: 10.1038/s41598-023-42649-2 EDN: IZDWDA
  35. Richard M, Rizo P. Feasibility of parathyroid gland autofluorescence imaging after indocyanine green fluorescence angiography. Front Endocrinol. 2023;14:1248449. doi: 10.3389/fendo.2023.1248449 EDN: ZQYUJI
  36. Zhang D, Sun H, Frattini F, et al. Use of Indocyanine Green Fluorescence During Total Thyroidectomy to Identify Parathyroid Glands and Prevent Hypoparathyroidism. Surg Technol Int. 2022;43:77–82. doi: 10.52198/23.STI.43.GS1741
  37. Spartalis E, Ntokos G, Georgiou K, et al. Intraoperative Indocyanine Green (ICG) Angiography for the Identification of the Parathyroid Glands: Current Evidence and Future Perspectives. In Vivo. 2020;34(1):23–32. doi: 10.21873/invivo.11741 EDN: VWMQKY
  38. Jin H, Cui M. New Advances of ICG Angiography in Parathyroid Identification. Endocr Metab Immune Disord Drug Targets. 2019;19(7):936–940. doi: 10.2174/1871530319666190206212456
  39. Rames JD, Tran NV, Hesley GK, et al. An Allergic Reaction in Contrast-enhanced Ultrasound Lymphography for Lymphovenous Bypass Surgery. Plast Reconstr Surg Glob Open. 2024;12(6):e5908. doi: 10.1097/GOX.0000000000005908 EDN: DIKKRP
  40. Henegan J, McGrath S, Shah K, Bendinelli C. On the use of autofluorescence for detection of intrathyroidal parathyroid adenoma. ANZ J Surg. 2020;90(5):916–917. doi: 10.1111/ans.15425
  41. Alesina PF, Meier B, Hinrichs J, et al. Enhanced visualization of parathyroid glands during video-assisted neck surgery. Langenbecks Arch Surg. 2018;403(3):395–401. doi: 10.1007/s00423-018-1665-2 EDN: UOBPPM
  42. Rossi L, De Palma A, Papini P, et al. Near-infrared autofluorescence pattern in parathyroid gland adenoma. Surg Endosc. 2024;38(11):6930–6937. doi: 10.1007/s00464-024-11314-8 EDN: SPBQGG
  43. Frey S, Bannani S, Caillard C, et al. Parathyroid near-infrared autofluorescence use for parathyroidectomy in mild primary hyperparathyroidism: Results from a randomized monocentric trial. Surgery. 2025;177:108878. doi: 10.1016/j.surg.2024.05.062 EDN: XEBGIV
  44. Akgun E, Ibrahimli A, Berber E. Near-Infrared Autofluorescence Signature: A New Parameter for Intraoperative Assessment of Parathyroid Glands in Primary Hyperparathyroidism. J Am Coll Surg. 2025;240(1):84–93. doi: 10.1097/XCS.0000000000001147 EDN: FREPSO
  45. Akgun E, Berber E. Near-Infrared Autofluorescence Signatures of Single- vs Multigland Disease in Primary Hyperparathyroidism. JAMA Otolaryngol Head Neck Surg. 2024;150(11):979–985. doi: 10.1001/jamaoto.2024.3095
  46. Takeuchi M, Takahashi T, Shodo R, et al. Comparison of Autofluorescence With Near-Infrared Fluorescence Imaging Between Primary and Secondary Hyperparathyroidism. Laryngoscope. 2021;131(6):E2097–E2104. doi: 10.1002/lary.29310 EDN: BXKMNM
  47. Indelicato P, Barbieri D, Salerno E, et al. Near-Infrared Autofluorescence or Intraoperative Parathyroid Hormone Determination as a Surgical Support Tool in Primary Hyperparathyroidism: Too Close to Call? Cancers. 2024;16(23):4018. doi: 10.3390/cancers16234018 EDN: XHGRPK
  48. Lee SM, Dedhia PH, Shen C, Phay JE. Smaller parathyroids have higher near-infrared autofluorescence intensity in hyperparathyroidism. Surgery. 2022;172(4):1114–1118. doi: 10.1016/j.surg.2022.06.027 EDN: CBGTYP
  49. De Leeuw F, Breuskin I, Abbaci M, et al. Intraoperative Near-infrared Imaging for Parathyroid Gland Identification by Auto-fluorescence: A Feasibility Study. World J Surg. 2016;40(9):2131–2138. doi: 10.1007/s00268-016-3571-5 EDN: UDPYQU
  50. Kahramangil B, Dip F, Benmiloud F, et al. Detection of Parathyroid Autofluorescence Using Near-Infrared Imaging: A Multicenter Analysis of Concordance Between Different Surgeons. Ann Surg Oncol. 2018;25(4):957-962. doi: 10.1245/s10434-018-6364-2 EDN: BNCHPH
  51. Palermo A, Fosca M, Tabacco G, et al. Raman Spectroscopy Applied to Parathyroid Tissues: A New Diagnostic Tool to Discriminate Normal Tissue from Adenoma. Anal Chem. 2018;90(1):847–854. doi: 10.1021/acs.analchem.7b03617
  52. Hu J, Xing J, Shao P, et al. Raman spectroscopy with an improved support vector machine for discrimination of thyroid and parathyroid tissues. J Biophotonics. 2024;17(8):e202400084. doi: 10.1002/jbio.202400084 EDN: GNLNDI

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025


СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ЭЛ № ФС 77 - 75008 от 01.02.2019.