Disorders of the gastrointestinal tract and possible mechanisms of their development in autism spectrum disorders

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents an analysis of current literature covering general information, as well as clinical and experimental research on autism spectrum disorder. Autism is a complex mental disorder. A growing body of literature suggests the association of autism spectrum disorder with dysfunction of the autonomic nervous system, especially those affecting the gastrointestinal tract and bladder. In addition, there are problems with nutrition, meta­bolism, immune and endocrine systems, and microbiota. Prevalence of autism has increased significantly over the past 40 years. As more and more children with autism become adults, understanding this condition throughout life is of paramount importance. Although many research has focused on understanding how diagnosis and treatment can help little children, few are focused on adults with autism and how primary care groups can better help these ­people. Despite significant progress toward identifying the factors influencing the development of autism spectrum disorder, the etiology of the disease remains uncertain. In this regard, scientists are trying to obtain models of autism in rodents to continue further research. Based on the data obtained during clinical and experimental ­researches, a hypothesis about the possible role of the purinergic system in the pathogenesis of autism spectrum disorder is consi­dered. The results are encouraging, but further research is required. Thus, somatic disorders can worsen the main symptoms of autism, which affect communication and behavior functioning. In this regard, further research is ne­cessary, including in a rodent model of autism spectrum disorder to contribute to identifying the possible causes of the disorder.

Full Text

Restricted Access

About the authors

D V Ivanova

Kazan state medical university

Email: auziganshin@gmail.com
Russian Federation, Kazan, Russia

A U Ziganshin

Kazan state medical university

Author for correspondence.
Email: auziganshin@gmail.com
Russian Federation, Kazan, Russia

References

  1. Kong X., Liu J., Liu K. et al. Altered autonomic functions and gut microbiome in individuals with autism spectrum disorder (ASD): Implications for assisting ASD screening and diagnosis. J. Autism Dev. Disord. 2020. doi: 10.1007/s10803-020-04524-1.
  2. Kostiukow A., Poniewierski P., Daroszewski P., Samborski W. Gastrointestinal disorders in children with autism spectrum disorder. Pol. Merkur. Lekarski. 2020; 48 (283): 69–72. PMID: 32218411.
  3. Published online ahead of print, 2020 Jul. 1. doi: 10.1016/j.neubiorev.2020.06.033.
  4. Karhu E., Zukerman R., Eshraghi R.S. et al. Nutritional interventions for autism spectrum disorder. Nutr. Rev. 2020; 78 (7): 515–531. doi: 10.1093/nutrit/nuz092.
  5. Prosperi M., Santocchi E., Muratori F. et al. Vocal and motor behaviors as a possible expression of gastrointestinal problems in preschoolers with autism spectrum disorder. BMC Pediatr. 2019; 19 (1): 466. doi: 10.1186/s12887-019-1841-8.
  6. Nitschke A., Deonandan R., Konkle A.T. The link between autism spectrum disorder and gut microbiota: A scoping review. Autism. 2020; 24 (6): 1328–1344. doi: 10.1177/1362361320913364.
  7. Miot S., Akbaraly T., Michelon C. et al. Comorbidity burden in adults with autism spectrum disorders and intellectual disabilities — A report from the EFAAR (frailty assessment in ageing adults with autism spectrum and intellectual disabilities) study. Front. Psychiatry. 2019; 10: 617. doi: 10.3389/fpsyt.2019.00617.
  8. Gubbiotti M., Elisei S., Bedetti C. et al. Urinary and bowel disfunction in autism spectrum disorder: A prospective, observational study. Psychiatr. Danub. 2019; 31 (­Suppl. 3): 475–478.
  9. Loyacono N., Sanz M.L., Gerbi M.D. et al. Gastrointestinal, nutritional, endocrine, and microbiota conditions in autism spectrum disorder. Problemas gastrointestinales, nutricionales, endocrinológicos y de microbiota en el trastorno del espectro autista. Arch. Argent. Pediatr. 2020; 118 (3): e271–e277. doi: 10.5546/aap.2020.eng.e271.
  10. Swetlik C., Earp S.E., Franco K.N. Adults with autism spectrum disorder: Updated considerations for healthcare providers. Cleve. Clin. J. Med. 2019; 86 (8): 543–553. doi: 10.3949/ccjm.86a.18100.
  11. Madra M., Ringel R., Margolis K.G. Gastrointestinal issues and autism spectrum disorder. Child Adolesc. Psychiatr. Clin. N. Am. 2020; 29 (3): 501–513. doi: 10.1016/j.chc.2020.02.005.
  12. Ristori M.V., Quagliariello A., Reddel S. et al. Autism, gastrointestinal symptoms and modulation of gut microbiota by nutritional interventions. Nutrients. 2019; 11 (11): 2812. doi: 10.3390/nu11112812.
  13. Iglesias-Vázquez L., Van Ginkel Riba G., ­Arija V., Canals J. Composition of gut microbiota in children with autism spectrum disorder: A systematic review and ­meta-analysis. Nutrients. 2020; 12 (3): 792. doi: 10.3390/nu12030792.
  14. Boem F., Amedei A. Healthy axis: Towards an integrated view of the gut-brain health. World J. Gastroenterol. 2019; 25 (29): 3838–3841. doi: 10.3748/wjg.v25.i29.3838.
  15. Xu M., Xu X., Li J., Li F. Association between gut microbiota and autism spectrum disorder: A systematic review and meta-analysis. Front. Psychiatry. 2019; 10: 473. doi: 10.3389/fpsyt.2019.00473.
  16. Ersöz Alan B., Gülerman F. The role of gut microbiota in autism spectrum disorder. Turk. Psikiyatri. Derg. 2019; 30 (3): 210–219. doi: 10.5080/u23560.
  17. Saurman V., Margolis K.G., Luna R.A. Autism spectrum disorder as a brain-gut-microbiome axis disorder. Dig. Dis. Sci. 2020; 65 (3): 818–828. doi: 10.1007/s10620-020-06133-5.
  18. Sala R., Amet L., Blagojevic-Stokic N. et al. Bri­dging the gap between physical health and autism spectrum disorder. Neuropsychiatr. Dis. Treat. 2020; 16: 1605–1618. doi: 10.2147/NDT.S251394.
  19. Hartman R.E., Patel D. Dietary approaches to the management of autism spectrum disorders. Adv. Neuro­biol. 2020; 24: 547–571. doi: 10.1007/978-3-030-30402-7_19.
  20. Prosperi M., Santocchi E., Muratori F. et al. Vocal and motor behaviors as a possible expression of gastrointestinal problems in preschoolers with autism spectrum disorder. BMC Pediatr. 2019; 19 (1): 466. doi: 10.1186/s12887-019-1841-8.
  21. Cheng B., Zhu J., Yang T. et al. Vitamin A deficiency increases the risk of gastrointestinal comorbidity and exa­cerbates core symptoms in children with autism spectrum disorder. Pediatr. Res. 2020. doi: 10.1038/s41390-020-0865-y.
  22. Cheng B., Zhu J., Yang T. et al. Vitamin A deficiency exacerbates autism-like behaviors and abnormalities of the enteric nervous system in a valproic acid-induced rat model of autism. Neurotoxicology. 2020; 79: 184–190. doi: 10.1016/j.neuro.2020.06.004.
  23. Robea M.A., Luca A.C., Ciobica A. Relationship between vitamin deficiencies and co-occurring symptoms in autism spectrum disorder. Medicina (Kaunas). 2020; 56 (5): 245. doi: 10.3390/medicina56050245.
  24. Sumathi T., Manivasagam T., Thenmozhi A.J. The role of gluten in autism. Adv. Neurobiol. 2020; 24: 469–479. doi: 10.1007/978-3-030-30402-7_14.
  25. Karhu E., Zukerman R., Eshraghi R.S. et al. Nutritional interventions for autism spectrum disorder. Nutr. Rev. 2020; 78 (7): 515–531. doi: 10.1093/nutrit/nuz092.
  26. González-Domenech P.J., Díaz Atienza F., García Pablos C. et al. Influence of a combined gluten-free and casein-free diet on behavior disorders in children and adolescents diagnosed with autism spectrum disorder: A 12-month follow-up clinical trial. J. Autism. Dev. Disord. 2020; 50: 935–948. doi: 10.1007/s10803-019-04333-1.
  27. Monteiro M.A., Santos A.A.A.D., Gomes L.M.M., Rito R.V.V.F. Autism spectrum disorder: A systematic review about nutritional interventions. Rev. Paul. Pediatr. 2020; 38: e2018262. doi: 10.1590/1984-0462/2020/38/2018262.
  28. Ferguson B.J., Dovgan K., Severns D. et al. Lack of associations between dietary intake and gastrointestinal symptoms in autism spectrum disorder. Front. Psychiatry. 2019; 10: 528. doi: 10.3389/fpsyt.2019.00528.
  29. Frye R.E., Vassall S., Kaur G. et al. Emerging biomarkers in autism spectrum disorder: a systematic review. Ann. Transl. Med. 2019; 7 (23): 792. doi: 10.21037/atm.2019.11.53.
  30. Qi X.R., Zhang L. the potential role of gut peptide hormones in autism spectrum disorder. Front. Cell. Neurosci. 2020; 14: 73. doi: 10.3389/fncel.2020.00073.
  31. Fröhlich H., Kollmeyer M.L., Linz V.C. et al. Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1+/– mice. Proc. Natl. Acad. Sci. USA. 2019; 116 (44): 22 237–22 245. doi: 10.1073/pnas.1911429116.
  32. Niemczyk J., Fischer R., Wagner C. et al. Detailed assessment of incontinence, psychological problems and parental stress in children with autism spectrum disorder. J. Autism Dev. Disord. 2019; 49 (5): 1966–1975. doi: 10.1007/s10803-019-03885-6.
  33. Mohammadi M.R., Ahmadi N., Khaleghi A. et al. Prevalence of autism and its comorbidities and the relationship with maternal psychopathology: A national population-based study. Arch. Iran Med. 2019; 22 (10): 546–553. PMID: 31679355.
  34. Gevezova M., Sarafian V., Anderson G., Maes M. Inflammation and mitochondrial dysfunction in autism spectrum disorder. CNS Neurol. Disord. Drug Targets. 2020. doi: 10.2174/1871527319666200628015039.
  35. Wise E.A. Aging in autism spectrum disorder. Am. J. Geriatr. Psychiatry. 2020; 28 (3): 339–349. doi: 10.1016/j.jagp.2019.12.001.
  36. Benevides T.W., Shore S.M., Andresen M.L. et al. Interventions to address health outcomes among autistic adults: A systematic review. Autism. 2020; 24 (6): 1345–1359. doi: 10.1177/1362361320913664.
  37. Brondino N., Fusar-Poli L., Miceli E. et al. Prevalence of medical comorbidities in adults with autism spectrum disorder. J. Gen. Intern. Med. 2019; 34 (10): 1992–1994. doi: 10.1007/s11606-019-05071-x.
  38. Houy-Durand E. Autism: a lifelong condition. Rev. Prat. 2019; 69 (7): 752–755. PMID: 32233315.
  39. Smith DaWalt L., Hong J., Greenberg J.S., Mai­lick M.R. Mortality in individuals with autism spectrum disorder: Predictors over a 20-year period. Autism. 2019; 23 (7): 1732–1739. doi: 10.1177/1362361319827412.
  40. Pelsőczi P., Kelemen K., Csölle C. et al. Disrup­ted social hierarchy in prenatally valproate-exposed autistic-like rats. Front. Behav. Neurosci. 2020; 13: 295. doi: 10.3389/fnbeh.2019.00295.
  41. Zheng W., Hu Y., Chen D. et al. Improvement of a mouse model of valproic acid-induced autism Nan Fang Yi Ke Da Xue Xue Bao. 2019; 39 (6): 718–723. doi: 10.12122/­j.issn.1673-4254.2019.06.14.
  42. Hirsch M.M., Deckmann I., Santos-Terra J. et al. Effects of single-dose antipurinergic therapy on behavio­ral and molecular alterations in the valproic acid-induced animal model of autism. Neuropharmacology. 2020; 167: 107930. doi: 10.1016/j.neuropharm.2019.107930.
  43. Ibi D., Fujiki Y., Koide N. et al. Paternal valproic acid exposure in mice triggers behavioral alterations in offspring. Neurotoxicol. Teratol. 2019; 76: 106837. doi: 10.1016/j.ntt.2019.106837.
  44. Mirza R., Sharma B. A selective peroxisome proliferator-activated receptor-γ agonist benefited propio­nic acid induced autism-like behavioral phenotypes in rats by attenuation of neuroinflammation and oxidative stress. Chem. Biol. Interact. 2019; 311: 108758. doi: 10.1016/j.cbi.2019.108758.
  45. Sharma R., Rahi S., Mehan S. Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicol. Rep. 2019; 6: 1164–1175. doi: 10.1016/j.toxrep.2019.10.019.
  46. Paudel R., Raj K., Gupta Y.K., Singh S. Oxiracetam and zinc ameliorates autism-like symptoms in propio­nic acid model of rats. Neurotox. Res. 2020; 37 (4): 815–826. doi: 10.1007/s12640-020-00169-1.
  47. Lobzhanidze G., Japaridze N., Lordkipanidze T. et al. Behavioural and brain ultrastructural changes following the systemic administration of propionic acid in adolescent male rats. Further development of a rodent model of autism. Int. J. Dev. Neurosci. 2020; 80 (2): 139–156. doi: 10.1002/jdn.10011.
  48. Nephew B.C., Nemeth A., Hudda N. et al. Traffic-­related particulate matter affects behavior, inflammation, and neural integrity in a developmental rodent model. Environ. Res. 2020; 183: 109242. doi: 10.1016/j.envres.2020.109242.
  49. Abramova O.V., Zubkov E.A., Zorkina Y.A. et al. Social and cognitive impairments in rat offspring after ultrasound-induced prenatal stress. Bull. Exp. Biol. Med. 2020; 168 (6): 730–733. doi: 10.1007/s10517-020-04790-0.
  50. Kazlauskas N., Seiffe A., Campolongo M. et al. Sex-specific effects of prenatal valproic acid exposure on sociability and neuroinflammation: Relevance for susceptibility and resilience in autism. Psychoneuroendocrinology. 2019; 110: 104441. doi: 10.1016/j.psyneuen.2019.104441.
  51. Mohammadi S., Asadi-Shekaari M., Basiri M. et al. Improvement of autistic-like behaviors in adult rats prenatally exposed to valproic acid through early suppression of NMDA receptor function. Psychopharmacology (Berl.). 2020; 237 (1): 199–208. doi: 10.1007/s00213-019-05357-2.
  52. Zhao H., Wang Q., Yan T. et al. Maternal valproic acid exposure leads to neurogenesis defects and autism-like beha­viors in non-human primates. Transl. Psychiatry. 2019; 9 (1): 267. Published 2019 Oct. 21. doi: 10.1038/s41398-019-0608-1.
  53. Horváth G., Otrokocsi L., Beko K. et al. P2X7 Receptors Drive Poly(I:C) Induced Autism-like Behavior in Mice. J. Neurosci. 2019; 39 (13): 2542–2561. doi: 10.1523/JNEUROSCI.1895-18.2019.
  54. Naviaux R.K. Antipurinergic therapy for autism —An in-depth review. Mitochondrion. 2018; 43: 1–15. doi: 10.1016/j.mito.2017.12.007.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2020 Ivanova D.V., Ziganshin A.U.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies