Resistance of Klebsiella pneumoniae isolated from patients with chronic osteomyelitis to ­antibacterial drugs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background. The spread of highly resistant strains of Klebsiella pneumoniae in the departments of purulent orthopedics determines the need for constant monitoring of the sensitivity of bacteria to antibacterial drugs.

Aim. To monitor the resistance of K. pneumoniae bacteria isolated from patients with chronic osteomyelitis to antibacterial drugs.

Material and methods. The resistance profiles of 663 clinical strains of K. pneumoniae isolated from wounds and fistulas of 294 patients with chronic osteomyelitis who were treated in the purulent department of the Federal State Budgetary Institution “National Medical Research Center for Traumatology and Orthopedics named after G.A. Ilizarov” in the period 2016–2021 to eight drugs: cefazolin, cefotaxime, cefepime, imipenem, meropenem, amikacin, gentamicin, piperacillin + tazobactam were analyzed. The analysis of the results was statistically proces¬sed using the software AtteStat, version 13.0. Data are presented as a percentage (%) of the total number of strains isolated during the study period.

Results. K. pneumoniae strains showed the greatest resistance to cephalosporin antibiotics and inhibitor-protected penicillins. The number of strains resistant to aminoglycosides decreased from 2016 to 2021. Imipenem had the highest activity against Klebsiella, the proportion of resistant strains did not exceed 48% over 6 years. Meropenem was active against Klebsiella over a 3-year period from 2016–2018 (the proportion of resistant isolates did not exceed 28.5%). Starting from 2019, the number of resistant strains increased, in 2021 their number was 63.9%. Among all the isolated strains of K. pneumoniae, the largest share fell on polydrug-resistant strains (89.6%).

Conclusion. The monitoring of the resistance of K. pneumoniae strains to eight antibacterial drugs revealed a high incidence of multidrug-resistant strains, low efficacy of cephalosporin antibiotics and inhibitor-protected β-lactam drugs, and an increase in resistance to carbapenems.

Full Text

Restricted Access

About the authors

Irina V. Shipitsyna

National Medical Research Center for Traumatology and Orthopedics named after G.A. Ilizarov

Author for correspondence.
ORCID iD: 0000-0003-2012-3115
SPIN-code: 3039-5202
Scopus Author ID: 55891336600
ResearcherId: AAH-1004-2020

Cand. Sci. (Biol.), Researcher, Scientific-and-Clinical Laboratory of Microbiology and Immunology

Russian Federation, Kurgan, Russia

Elena V. Osipova

National Medical Research Center for Traumatology and Orthopedics named after G.A. Ilizarov

ORCID iD: 0000-0003-2408-4352
SPIN-code: 1146-2236
Scopus Author ID: 56402839200
ResearcherId: AAG-9989-2020

Cand. Sci. (Biol.), Sen. Researcher, Scientific-and-Clinical Laboratory of Microbiology and Immunology

Russian Federation, Kurgan, Russia


  1. Shipitsyna IV, Osipova EV, Leonchuk DS, Sudnitsyn AS. Monitoring of gram-negative bacteria and antibiotic resistance in osteomyelitis. Geniy ortopedii. 2020;26(4):544–547. (In Russ.) doi: 10.18019/1028-4427-2020-26-4-544-547.
  2. Terekhova RP, Mitish VA, Paskhalova YuS, Skladan GE, Prudnikova SA, Blatun LA. Osteomyelitis agents of the long bones and their resistance. Wounds and Wound Infections. The Prof BM Kostyuchenok Journal. 2016;3(2):24–30. (In Russ.) doi: 10.17650/2408-9613-2016-3-2-24-30.
  3. Okulich VK, Fedyanin SD, Plotnikov FV, Shilin VE, Matskevich EL. Rational use of antibiotics in the treatment of hematogenous and post-traumatic osteomyelitis. Novosti khirurgii. 2009;(4):65–77. (In Russ.)
  4. Chebotar IV, Bocharova YuA, Podoprigora IV, Shagin DA. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Clinical microbiology and antimicrobial chemotherapy. 2020;22(1):4–19. (In Russ.) doi: 10.36488/cmac.2020.1.4-19.
  5. Kozlova NS, Barantsevich NE, Barantsevich EP. Susceptibility to antibiotics in Klebsiella pneumoniae strains isolated in a multidisciplinary medical centre. Russian Journal of Infection and Immunity. 2018;8(1):79–84. (In Russ.) doi: 10.15789/2220-7619-2018-1-79-84.
  6. Lery LM, Frangeul L, Tomas A, Passet V, Almeida AS, Bialek-Davenet S, Barbe V, Bengoechea JA, Sansonetti P, Brisse S, Tournebize R. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol. 2014;12(1):1. doi: 10.1186/1741-7007-12-41.
  7. Osipova EV, Shipitsyna IV. Informational characteristics of microbial biofilms formed by clinical strains of Klebsiella pneumoniae in vitro on the surface of the cover glass. Geniy ortopedii. 2018;24(4):478–481. (In Russ.) doi: 10.18019/1028-4427-2018-24-4-478-481.
  8. Vinnik YuS, Peryanova OV, Onzul EV, Teplyakova OV. Microbial biofilms in surgery: formation mechanisms, drug resistance, ways of solving problems. Novosti khirurgii. 2010;(6):115–125. (In Russ.)
  9. Tapalsky DV, Bond NA, Lagun LV. Microbiological monitoring system of extensively drug-resistant and pandrug-resistant bacterial pathogens determining the sensitivity to antibiotic combinations. Vestnik VGMU. 2018;17(1):50–58. (In Russ.) doi: 10.22263/2312-4156.2018.1.50.
  10. Shipitsyna IV, Osipova EV, Astashova OA, Leonchuk DS. Monitoring of the leading causative agents of osteomyelitis and their antibiotic resistance. Klinicheskaya laboratornaya diagnostika. 2020;65(9):562–566. (In Russ.) doi: 10.18821/0869-2084-2020-65-9-562-566.
  11. Lazareva IV, Ageevets VA, Sidorenko SV. Antibiotic resistance: the role of carbapenemases. Meditsina ekstremalnykh situatsiy. 2018;20(3):320–328. (In Russ.)
  12. Kryzhanovskaya OA, Lazareva AV, Alyabieva NM, Tepaev RF, Karaseva OV, Chebotar IV, Mayanskiy NA. Antibiotic resistance and its molecular mechanisms in carbapenem-nonsusceptible klebsiella pneumoniae isolated in pediatric ICUS in Moscow. Antibiotiki i khimioterapiya. 2016;61(7–8):22–26. (In Russ.)
  13. CLSI. Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. (access date: 04.11.2021).
  14. Sukhorukova MV, Edelstein MV, Ivanchik NV, Skleenova EYu, Shajdullina ER, Azyzov IS; “MARATHON” study group. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiolo-gical study “MARATHON 2015–2016”. Clinical Microbiology and Antimicrobial Chemotherapy. 2019;21(2):147–159. (In Russ.) doi: 10.36488/cmac.2019.2.147-159.
  15. Anganova EV, Raspopina LA, Vetokhina AV, Dukhanina AV. Antibiotic resistance of Klebsiella pneumoniae to cephalosporins. Actа Biomedica Scientifica. 2017;2(4):43-47. (In Russ.) doi: 10.12737/article_59fad513099c94.94562871.
  16. Pokudina IO, Kovalenko KA. Prevalence and contribution to antibiotic resistance of β-lactamases in outpatient isolates of Klebsiella pneumoniae. Mezhdunarodnyy zhurnal prikladnykh i fundamentanykh issledovaniy. 2016;(12-2):295–298. (In Russ.)
  17. Po-lishchuk AG, Yakubovich EI, Polukhina OV, Osovskikh VV, Evtushenko VI. Carbapenemase-producing gram-negative bacteria in a specialized hospital of the Russian Scientific Center for Radiology and Surgical Technologies of St. Petersburg. Clinical microbiology and antimicrobial chemotherapy. 2017;19(3):235–242.(In Russ.)
  18. Badikov VD. Mikrobiologicheskie osnovy antimikrobnoy terapii infek-tsionnykh zabolevaniy. Rukovodstvo dlya vrachey. (Microbiological bases of antimicrobial therapy of infectious diseases. Guide for doctors.) Saint Petersburg; 2005.184 p. (In Russ.)

Supplementary files

Supplementary Files
1. Рис. 1. Количество выделенных штаммов K. pneumoniae за исследуемые периоды

Download (13KB)
2. Рис. 2. Динамика резистентности бактерий K. Pneumoniae к антибактериальным препаратам; * р <0,05 в сравнении с 2016–2018 гг.

Download (34KB)

© 2022 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies