The role of classical risk factors for knee osteoarthritis in unilateral transtibial amputation

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The study aimed to review the literature on the classical risk factors for knee osteoarthritis and their possible role in the development of this pathology in patients with unilateral transtibial amputation in terms of potential rehabilitation prospects. A search of publications was carried out using PubMed databases of the US National Center for Biotechnology Information and the website of the Elsevier publishing house. Well-established increased risk factors for knee osteoarthritis are old age, female gender, lower limb muscle weakness, low or excessive physical activity, overweight, a history of knee joint injury or surgery, chronic knee pain. These factors are common for disabled persons with unilateral transtibial amputation, which, combined with specific mechanical factors, makes these persons more vulnerable to the development and progression of osteoarthritis. Programs aimed at eliminating modifiable risk factors for the development of knee osteoarthritis can contribute to the preservation of knee joint function in the long term and improve the quality of life of persons with unilateral transtibial amputation. This requires the well-coordinated efforts of a multidisciplinary team, as well as the participation of the disabled persons themselves. Identification and management of the potentially modifiable classical risk factors for the development of knee osteoarthritis are one of the promising pathways of rehabilitation of persons with unilateral transtibial amputation.

Full Text

Restricted Access

About the authors

O I Khokhlova

Novokuznetsk Scientific and Practical Centre for Medical and Social Expertise and Rehabilitation of Disabled Persons

Author for correspondence.
Email: hohlovaoliv@rambler.ru
ORCID iD: 0000-0003-3069-5686
SPIN-code: 2386-7820
Scopus Author ID: 2458875
Russian Federation, Novokuznetsk, Russia

E M. Vasilchenko

Novokuznetsk Scientific and Practical Centre for Medical and Social Expertise and Rehabilitation of Disabled Persons

Email: root@reabil-nk.ru
ORCID iD: 0000-0001-9025-4060
SPIN-code: 8910-2615
Russian Federation, Novokuznetsk, Russia

A M. Berman

Novokuznetsk Scientific and Practical Centre for Medical and Social Expertise and Rehabilitation of Disabled Persons

Email: root@reabil-nk.ru
Russian Federation, Novokuznetsk, Russia

References

  1. Loeser R.F., Goldring S.R., Scanzello C.R., Goldring M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012; 64 (6): 1697–1707. doi: 10.1002/art.34453.
  2. Contartese D., Tschon M., De Mattei M., Fini M. Sex specific determinants in osteoarthritis: A systematic review of preclinical studies. Int. J. Mol. Sci. 2020; 21 (10): 3696. doi: 10.3390/ijms21103696.
  3. Glyn-Jones S., Palmer A.J.R., Agricola R., Price A.J., Vincent T.L., Weinans H., Carr A.J. Osteoarthritis. Lancet. 2015; 386 (9991): 376–387. doi: 10.1016/S0140-6736(14)60802-3.
  4. Farrokhi S., Mazzone B., Yoder A., Grant K., Wyatt M.A. Narrative review of the prevalence and risk factors associated with development of knee osteoarthritis after traumatic unilateral lower limb amputation. Mil. Med. 2016; 181 (S4): 38–44. doi: 10.7205/MILMED-D-15-00510.
  5. Hussain S.M., Neilly D.W., Baliga S., Patil S., Patil S. Knee osteoarthritis: a review of management options. Scott. Med. J. 2016; 61 (1): 7–16. doi: 10.1177/0036933015619588.
  6. Struyf P.A., van Heugten C.M., Hitters M.W., Smeets R.J. The prevalence of osteoarthritis of the intact hip and knee among traumatic leg amputees. Arch. Phys. Med. Rehabil. 2009; 90 (3): 440–446. doi: 10.1016/j.apmr.2008.08.220.
  7. Gailey R. Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J. Rehabil. Res. Dev. 2008; 45 (1): 15–30. doi: 10.1682/JRRD.2006.11.0147.
  8. Morgenroth D.C., Gellhorn A.C., Suri P. Osteoarthritis in the disabled population: a mechanical perspective. PMR. 2012; 4 (Suppl. 5): S20–S27. doi: 10.1016/j.pmrj.2012.01.003.
  9. Wink A.E., Gross K.D., Brown C.A., Lewis C.E., Torner J., Nevitt M.C., Tolstykh I., Sharma L., Felson D.T. Association of varus knee thrust during walking with worsening Western Ontario and McMaster Universities Osteoarthritis index knee pain: a prospective cohort study. Arthritis Care Res. (Hoboken). 2019; 71 (10): 1353–1359. doi: 10.1002/acr.23766.
  10. Landsmeer M.L.A., Runhaar J., van Middelkoop M., Oei E.H.G., Schiphof D., Bindels P.J.E., Bierma-Zeinstra S.M.A. Predicting knee pain and knee osteoarthritis among overweight women. J. Am. Board. Fam. Med. 2019; 32 (4): 575–584. doi: 10.3122/jabfm.2019.04.180302.
  11. Gardiner B.S., Woodhouse F.G., Besier T.F., Grodzinsky A.J., Lloyd D.G., Zhang L., Smith D.W. Predicting knee osteoarthritis. Ann. Biomed. Eng. 2016; 44 (1): 222–233. doi: 10.1007/s10439-015-1393-5.
  12. Heijink A., Gomoll A., Madry H., Drobnič M., Filardo G., Espregueira-Mendes J., Van Dijk C.N. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg., Sports Traumatol., Arthroscopy. 2012; 20 (3): 423–435. doi: 10.1007/s00167-011-1818-0.
  13. O'Neill T.W., McCabe P.S., McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2018; 32 (2): 312–326. doi: 10.1016/j.berh.2018.10.007.
  14. Dulay G.S., Cooper C., Dennison E.M. Knee pain, knee injury, knee osteoarthritis & work. Best Pract. Res. Clin. Rheumatol. 2015; 29 (3): 454–461. doi: 10.1016/j.berh.2015.05.005.
  15. Loeser R.F., Collins J.A., Diekman B.O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016; 12 (7): 412–420. doi: 10.1038/nrrheum.2016.65.
  16. Ramczykowski T., Schildhauer T.A. Amputation of the lower limb — treatment and management. Z. Orthop. Unfall. 2017; 155 (4): 477–498. doi: 10.1055/s-0042-122394.
  17. Yang Y., You X., Cohen J.D., Zhou H., He W., Li Z., Xiong Y., Yu T. Sex differences in osteoarthritis pathogenesis: A comprehensive study based on bioinformatics. Med. Sci. Monit. 2020; 26: e923331. doi: 10.12659/MSM.923331.
  18. Phinyomark A., Osis S.T., Hettinga B.A., Kobsar D., Ferber R. Gender differences in gait kinematics for patients with knee osteoarthritis. BMC Musculoskelet. Disord. 2016; 17: 157. doi: 10.1186/s12891-016-1013-z.
  19. Blagojevic M., Jinks C., Jeffery A., Jordan K.P. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2010; 18 (1): 24–33. doi: 10.1016/j.joca.2009.08.010.
  20. Li D., Li S., Chen Q., Xie X. The prevalence of symptomatic knee osteoarthritis in relation to age, sex, area, region, and body mass index in China: A systematic review and meta-analysis. Front. Med. (Lausanne). 2020; 7: 304. doi: 10.3389/fmed.2020.00304.
  21. Dietrich W., Haitel A., Holzer G., Huber J.C., Kolbus A., Tschugguel W. Estrogen receptor-beta is the predominant estrogen receptor subtype in normal human synovia. J. Soc. Gynecol. Investig. 2006; 13 (7): 512–517. doi: 10.1016/j.jsgi.2006.07.002.
  22. Kuh D., Cooper R., Moore A., Richards M., Hardy R. Age at menopause and lifetime cognition: findings from a British birth cohort study. Neurology. 2018; 90 (19): e1673–e1681. doi: 10.1212/WNL.0000000000005486.
  23. Hussain M.A., Lindsay T.F., Mamdani M., Wang X., Verma S., Al-Omran M. Sex differences in the outcomes of peripheral arterial disease: a population-based cohort study. CMAJ Open. 2016; 4 (1): E124–E131. doi: 10.9778/cmajo.20150107.
  24. Kamrad I., Söderberg B., Örneholm H., Hagberg K. SwedeAmp-the Swedish Amputation and Prosthetics Re¬gistry: 8-year data on 5762 patients with lower limb amputation show sex differences in amputation level and in patient-reported outcome. Acta Orthop. 2020; 91 (4): 464–470. doi: 10.1080/17453674.2020.1756101.
  25. Murphy L., Schwartz T.A., Helmick C.G., Renner J.B., Tudor G., Koch G. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 2008; 59 (9): 1207–1213. doi: 10.1002/art.24021.
  26. Zhou Z.-Y., Liu Y.-K., Chen H.-L., Liu F. Body mass index and knee osteoarthritis risk: a dose-response meta-analysis. Obesity. 2014; 22 (10): 2180–2185. doi: 10.1002/oby.20835.
  27. Landsmeer M.L.A., de Vos B.C., van der Plas P., van Middelkoop M., Vroegindeweij D., Bindels P.J.E., Oei E.H.G., Bierma-Zeinstra S.M.A., Runhaar J. Effect of weight change on progression of knee OA structural features assessed by MRI in overweight and obese women. Osteoarthritis Cartilage. 2018; 26 (12): 1666–1674. doi: 10.1016/j.joca.2018.08.006.
  28. Gersing A.S., Schwaiger B.J., Nevitt M.C., Zarnowski J., Joseph G.B., Feuerriegel G., Jungmann P.M., Guimaraes J.B., Facchetti L., McCulloch C.E., Link T.M. Weight loss regimen in obese and overweight individuals is associated with reduced cartilage degeneration: 96-month data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2019; 27 (6): 863–870. doi: 10.1016/j.joca.2019.01.018.
  29. Antony B., Jones G., Jin X., Ding C. Do early life factors affect the development of knee osteoarthritis in later life: a narrative review. Arthritis Res. Ther. 2016; 18 (1): 202. doi: 10.1186/s13075-016-1104-0.
  30. Chen L., Zheng J.J.Y., Li G., Yuan J., Ebert J.R., Li H., Papadimitriou J., Wang Q., Wood D., Jones C.W., Zheng M. Pathogenesis and clinical management of obesity-related knee osteoarthritis: Impact of mechanical loading. J. Orthop. Translat. 2020; 24: 66–75. doi: 10.1016/j.jot.2020.05.001.
  31. Littman A.J., McFarland L.V., Thompson M.L., Bouldin E.D., Arterburn D.E., Majerczyk B.R., Boyko E.J. Weight loss intention, dietary behaviors, and barriers to dietary change in veterans with lower extremity amputations. Disabil. Health J. 2015; 8 (3): 325–335. doi: 10.1016/j.dhjo.2014.10.003.
  32. Bennell K.L., Wrigley T.V., Hunt M.A., Lim B.W., Hinman R.S. Update on the role of muscle in the genesis and management of knee osteoarthritis. Rheum. Dis. Clin. North Am. 2013; 39 (1): 145–176. doi: 10.1016/j.rdc.2012.11.003.
  33. Øiestad B.E., Holm I., Gunderson R., Myklebust G., Risberg M.A. Quadriceps muscle weakness after anterior cruciate ligament reconstruction: a risk factor for knee osteoarthritis? Arthritis Care Res. 2010; 62 (12): 1706–1714. doi: 10.1002/acr.20299.
  34. Nakagawa K., Maeda M. Associations of knee muscle force, bone malalignment, and knee-joint laxity with osteoarthritis in elderly people. J. Phys. Ther. Sci. 2017; 29 (3): 461–464. doi: 10.1589/jpts.29.461.
  35. Muraki S., Akune T., Teraguchi M., Kagotani R., Asai Y., Yoshida M., Tokimura F., Tanaka S., Oka H., Kawaguchi H., Nakamura K., Yoshimura N. Quadriceps muscle strength, radiographic knee osteoarthritis and knee pain: the ROAD study. BMC Muscoskel. Disord. 2015; 16 (1): 305. doi: 10.1186/s12891-015-0737-5.
  36. Culvenor A.G., Segal N.A., Guermazi A., Roemer F., Felson D.T., Nevitt M.C., Lewis C.E., Stefanik J.J. Sex-specific influence of quadriceps weakness on worsening patellofemoral and tibiofemoral cartilage damage: a prospective cohort study. Arthritis Care Res. (Hoboken). 2019; 71 (10): 1360–1365. doi: 10.1002/acr.23773.
  37. Hinman R.S., Hunt M.A., Creaby M.W., Wrigley T.V., McManus F.J., Bennell K.L. Hip muscle weakness in individuals with medial knee osteoarthritis. -Arthritis Care Res. (Hoboken). 2010; 62 (8): 1190–1193. doi: 10.1002/acr.20199.
  38. Sled E.A., Khoja L., Deluzio K.J., Olney S.J., Culham E.G. Effect of a home program of hip abductor exercises on knee joint loading, strength, function, and pain in people with knee osteoarthritis: a clinical trial. Phys. Ther. 2010; 90 (6): 895–904. doi: 10.2522/ptj.20090294.
  39. Fontes Filho C.H.D.S., Laett C.T., Gavilão U.F., Campos J.C.Jr., Alexandre D.J.A., Cossich V.R.A., Sousa E.B. Bodyweight distribution between limbs, muscle strength, and proprioception in traumatic transtibial amputees: a cross-sectional study. Clinics (Sao Paulo). 2021; 76: e2486. doi: 10.6061/clinics/2021/e2486.
  40. Lloyd C.H., Stanhope S.J., Davis I.S., Royer T.D. Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, Amputee Gait. Gait Posture. 2010; 32 (3): 296–300. doi: 10.1016/j.gaitpost.2010.05.003.
  41. Esposito E.R., Miller R.H. Maintenance of muscle strength retains a normal metabolic cost in simulated walking after transtibial limb loss. PLoS One. 2018; 13 (1): e0191310. doi: 10.1371/journal.pone.0191310.
  42. Nolan L. A training programme to improve hip strength in persons with lower limb amputation. J. Rehabil. Med. 2012; 44 (3): 241–248. doi: 10.2340/16501977-0921.
  43. Zhang X., Pan X., Deng L., Fu W. Relationship between knee muscle strength and fat/muscle mass in elderly women with knee osteoarthritis based on dual-energy X-ray absorptiometry. Int. J. Environ. Res. Public Health. 2020; 17 (2): 573. doi: 10.3390/ijerph17020573.
  44. Lefèvre-Colau M.M., Nguyen C., Haddad R., Delamarche P., Paris G., Palazzo C., Poiraudeau S., Rannou F., Roren A. Is physical activity, practiced as recommended for health benefit, a risk factor for osteoarthritis? Ann. Phys. Rehabil. Med. 2016; 59 (3): 196–206. doi: 10.1016/j.rehab.2016.02.007.
  45. Regnaux J.P., Lefevre Colau M.M., Trinquart L., Nguyen C., Boutron I., Brosseau L., Ravaud P. High-intensity versus low-intensity physical activity or exercise in people with hip or knee osteoarthritis. Cochrane Database Syst. Rev. 2015; (10): CD010203. doi: 10.1002/14651858.CD010203.pub2.
  46. Halilaj E., Hastie T.J., Gold G.E., Delp S.L. Physical activity is associated with changes in knee cartilage microstructure. Osteoarthritis Cartilage. 2018; 26 (6): 770–774. doi: 10.1016/j.joca.2018.03.009.
  47. Nomura M., Sakitani N., Iwasawa H., Kohara Y., Takano S., Wakimoto Y., Kuroki H., Moriyama H. Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Osteoarthritis Cartilage. 2017; 25 (5): 727–736. doi: 10.1016/j.joca.2016.11.013.
  48. Campbell T.M., Reilly K., Laneuville O., Uhthoff H., Trudel G. Bone replaces articular cartilage in the rat knee joint after prolonged immobilization. Bone. 2018; 106: 42–51. doi: 10.1016/j.bone.2017.09.018.
  49. Soutakbar H., Lamb S.E., Silman A.J. The different influence of high levels of physical activity on the incidence of knee OA in overweight and obese men and -women — a gender specific analysis. Osteoarthritis Cartilage. 2019; 27 (10): 1430–1436. doi: 10.1016/j.joca.2019.05.025.
  50. Bricca А., Wirth W., Juhl C.B., Kemnitz J., Hunter D.J., Kwoh C.K., Eckstein F., Culvenor A.G. Moderate physical activity may prevent cartilage loss in women with knee osteoarthritis: data from the Osteoarthritis Initiative. Arthritis Care Res. (Hoboken). 2019; 71 (2): 221–226. doi: 10.1002/acr.23791.
  51. Nagao M., Ishijima M., Kaneko H., Takazawa Y., Ikeda H., Kaneko K. Physical activity for knee osteoarthritis. Clin. Calcium. 2017; 27 (1): 25–30. PMID: 28017942.
  52. Wallace I.J., Worthington S., Felson D.T., Jurmain R.D., Wren K.T., Maijanen H., Woods R.J., Lieberman D.E. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl. Acad. Sci. USA. 2017; 114 (35): 9332–9336. doi: 10.1073/pnas.1703856114.
  53. Hafer J.F., Kent J.A., Boyer K.A. Physical activity and age-related biomechanical risk factors for knee osteoarthritis. Gait Posture. 2019; 70: 24–29. doi: 10.1016/j.gaitpost.2019.02.008.
  54. Seedhom B.B. Conditioning of cartilage during normal activities is an important factor in the development of osteoarthritis. Rheumatology. 2006; 45: 146–149. doi: 10.1093/rheumatology/kei197.
  55. Munukka M., Waller B., Rantalainen T., Häkkinen A., Nieminen M.T., Lammentausta E., Kujala U.M., Paloneva J., Sipilä S., Peuna A., Kautiainen H., Selänne H., Kiviranta I., Heinonen A. Efficacy of progressive aquatic resistance training for tibiofemoral cartilage in postmenopausal women with mild knee osteoarthritis: a randomised controlled trial. Osteoarthritis Cartilage. 2016; 24 (10): 1708–1717. doi: 10.1016/j.joca.2016.05.007.
  56. Koli J., Multanen J., Kujala U.M., Häkkinen A., Nieminen M.T., Kautiainen H., Lammentausta E., Jämsä T., Ahola R., Selänne H., Kiviranta I., Heinonen A. Effects of exercise on patellar cartilage in women with mild knee osteoarthritis. Med. Sci. Sports Exerc. 2015; 47 (9): 1767–1774. doi: 10.1249/MSS.0000000000000629.
  57. McAlindon T.E., Bannuru R.R., Sullivan M.C., Arden N.K., Berenbaum F., Bierma-Zeinstra S.M., Hawker G.A., Henrotin Y., Hunter D.J., Kawaguchi H., Kwoh K., Lohmander S., Rannou F., Roos E.M., Underwood M. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage. 2014; 22 (3): 363–388. doi: 10.1016/j.joca.2014.01.003.
  58. Bussmann J.B., Grootscholten E.A., Stam H.J. Daily physical activity and heart rate response in people with a unilateral transtibial amputation for vascular disease. Arch. Phys. Med. Rehabil. 2004; 85 (2): 240–244. doi: 10.1016/s0003-9993 (03) 00485-4.
  59. Miller R.H., Krupenevich R.L., Pruziner A.L., Wolf E.J., Schnall B.L. Medial knee joint contact force in the intact limb during walking in recently ambulatory service members with unilateral limb loss: a cross-sectional study. Peer J. 2017; 5: e2960. doi: 10.7717/peerj.2960.
  60. Bragaru M., Dekker R., Geertzen J., Dijkstra P. Amputees and sports a systematic review. Sports Med. 2011; 41 (9): 721–740. doi: 10.2165/11590420-000000000-00000.
  61. Watt F.E., Corp N., Kingsbury S.R., Frobell R., Englund M., Felson D.T., Levesque M., Majumdar S., Wilson C., Beard D.J., Lohmander L.S., Kraus V.B., Roemer F., Conaghan P.G., Mason D.J. Towards prevention of post-traumatic osteoarthritis: report from an international expert working group on considerations for the design and conduct of interventional studies following acute knee injury. Osteoarthritis Cartilage. 2019; 27 (1): 23–33. doi: 10.1016/j.joca.2018.08.001.
  62. Driban J.B., Eaton C.B., Lo G.H., Ward R.J., Lu B., McAlindon T.E. Association of knee injuries with accelerated knee osteoarthritis progression: data from the osteoarthritis initiative. Arthritis Care Res. 2014; 66 (11): 1673–1679. doi: 10.1002/acr.22359.
  63. Riordan E.A., Little C., Hunter D. Pathogenesis of post-traumatic OA with a view to intervention. Best Practic Res. Clin. Rheumatol. 2014; 28 (1): 17–30. doi: 10.1016/j.berh.2014.02.001.
  64. Friel N.A., Chu C.R. The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clin. Sports Med. 2013; 32 (1): 1–12. doi: 10.1016/j.csm.2012.08.017.
  65. Luc B., Gribble P.A., Pietrosimone B.G. Osteoarthritis prevalence following anterior cruciate ligament recon¬struction: a systematic review and numbers-needed-to-treat analysis. J. Athl. Train. 2014; 49 (6): 806–819. doi: 10.4085/1062-6050-49.3.35.
  66. Jones M.H., Spindler K.P. Risk factors for radiographic joint space narrowing and patient reported outcomes of post-traumatic osteoarthritis after ACL reconstruction: data from the MOON cohort. J. Orthop. Res. 2017; 35 (7): 1366–1374. doi: 10.1002/jor.23557.
  67. Narez G.E., Fischenich K.M., Donahue T.L.H. Experimental animal models of post-traumatic osteoarthritis of the knee. Orthop. Rev. (Pavia). 2020; 12 (2): 8448. doi: 10.4081/or.2020.8448.
  68. Lattermann C., Jacobs C.A., Bunnell M.P., Jochimsen K.N., Abt J.P., Reinke E.K. Logistical challenges and design considerations for studies using acute anterior cruciate ligament injury as a potential model for early posttraumatic osteoarthritis. J. Orthop. Res.: Official Publication of the Orthopaedic Research Society. 2017; 35 (3): 641–650. doi: 10.1002/jor.23329.
  69. Dare D., Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury. Curr. Rheumatol. Rep. 2014; 16 (10): 448. doi: 10.1007/s11926-014-0448-1.
  70. Wang L.J., Zeng N., Yan Z.P., Li J.T., Ni G.X. Post-traumatic osteoarthritis following ACL injury. Arthritis Res. Ther. 2020; 22 (1): 57. doi: 10.1186/s13075-020-02156-5.
  71. Low E.E., Inkellis E., Morshed S. Complications and revision amputation following trauma-related lower limb loss. Injury. 2017; 48 (2): 364–370. doi: 10.1016/j.injury.2016.11.019.
  72. Kobayashi L., Inaba K., Barmparas G., Criscuoli M., Lustenberger T., Talving P., Lam L., Demetriades D. Traumatic limb amputations at a level I trauma center. Eur. J. Trauma Emerg. Surg. Off Publ. Eur. Trauma Soc. 2011; 37 (1): 67–72. doi: 10.1007/s00068-010-0011-3.
  73. Kesikburun S., Köroğlu Ö., Yaşar E., Güzelküçük Ü., Yazcoğlu K., Tan A.K. Comparison of intact knee cartilage thickness in patients with traumatic lower extremity amputation and nonimpaired individuals. Am. J. Phys. Med. Rehabil. 2015; 94 (8): 602–608. doi: 10.1097/PHM.0000000000000216.
  74. Hensor E.M., Dube B., Kingsbury S.R., Tennant A., Conaghan P.G. Toward a clinical definition of early osteoarthritis: onset of patientreported knee pain begins on stairs. Data from the osteoarthritis initiative. Arthritis Care Res. (Hoboken). 2015; 67 (1): 40–47. doi: 10.1002/acr.22418.
  75. Conaghan P.G., D’Agostino M.A., LeBars M., Baron G., Schmidely N., Wakefield R., Ravaud P., Grassi W., Martin-Mola E., So A., Backhaus M., Malaise M., Emery P., Dougados M. Clinical and ultrasonagraphic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year prospective EULAR study. Ann. Rheum. Dis. 2010; 69 (4): 644–647. doi: 10.1136/ard.2008.099564.
  76. Norvell D.C., Czerniecki J.M., Reiber G.E., Maynard C., Pecoraro J.A., Weiss N.S. The prevalence of knee pain and symptomatic knee osteoarthritis among veteran traumatic amputees and nonamputees. Arch. Phys. Med. Rehabil. 2005; 86 (3): 487–493. doi: 10.1016/j.apmr.2004.04.034.
  77. Beisheim E.H., Seth M., Horne J.R., Hicks G.E., Pohlig R.T., Sions J.M. Sex-specific differences in multisite pain presentation among adults with lower-limb loss. Pain Pract. 2021; 21 (4): 419–427. doi: 10.1111/papr.12969.
  78. Kwak C.-J., Kim Y.L., Lee S.M. Effects of elastic-band resistance exercise on balance, mobility and gait function, flexibility and fall efficacy in elderly people. J. Phys. Ther. Sci. 2016; 28 (11): 3189–3196. doi: 10.1589/jpts.28.3189.
  79. Major M.J., Fey N.P. Considering passive mechanical properties and patient user motor performance in lower limb prosthesis design optimization to enhance rehabilitation outcomes. Phys. Ther. Rev. 2017; 22 (3–4): 1–15. doi: 10.1080/10833196.2017.1346033.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2021 Eco-Vector





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies