The role of amylin in the development of diabetic osteopathy

Cover Page


Diabetes mellitus adversely affects the bone. Basically, it is related to weakening of the anabolic effect of insulin and other pancreatic hormones. Mechanisms underlying the decrease in bone density are not fully understood. However, many of the systemic changes related to metabolic abnormalities in diabetes have a damaging effect on the bone tissue. Inadequate compensation of glycemic profile in this disease, both directly (non-enzymatic glycosylation of proteins, activation of polyol pathway of glucose metabolism, oxidative stress) and indirectly (violation of gene expression), damages the bone structure. Another anabolic hormone produced by β-cells of the pancreas is amylin. It is a potent hypoglycemic and antiresorptive hormone affecting calcium homeostasis and influencing the preservation of bone density. The studies have shown that amylin, on the one hand, stimulates osteoblast proliferation, and on the other hand, inhibits osteoclast motility, thus acting similar to calcitonin. Inefficient redistribution of bone mass occurs. This may explain the increased incidence of fractures in patients with type 2 diabetes on the background of high bone density according to densitometry. In this regard, further studies are required to clarify the effect of amylin deficiency on the development of osteoporosis.

About the authors

S S Safarova

Azerbaijan Medical University

Author for correspondence.
Baku, Azerbaijan


  1. Zhukouskaya V.V., Eller-Vainicher C., Vadzianava V.V. et al. Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes Care. 2013; 36 (6): 1635-1640. doi: 10.2337/dc12-1355.
  2. Leslie W.D., Aubry-Rozier B., Lamy O., Hans D. Bone density program. TBS (trabecular bone score) and diabetes-related fracture risk. J. Clin. Endocrinol. Metab. 2013; 98 (2): 602-609. doi: 10.1210/jc.2012-3118.
  3. Johnston S.S., Conner C., Aagren M. et al. Association between hypoglycaemic events and fall-related fractures in Medicare-covered patients with type 2 diabetes. Diabetes Obes. Metab. 2012; 14 (7): 634-643. doi: 10.1111/j.1463-1326.2012.01583.x.
  4. Napoli N., Strotmeyer E.S., Ensrud K.E. et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. 2014; 57 (10): 2057-2065. doi: 10.1007/s00125-014-3289-6.
  5. MacIntyre I. Amylin-amide, bone conservation and pancreatic β-cells. Lancet. 1989; 2: 1026-1027. doi: 10.1016/S0140-6736(89)91028-3.
  6. Napoli N., Strollo R., Paladini A. et al. The alliance of mesenchymal stem cells, bone, and diabetes. Int. J. Endocrinol. 2014; 2014: 690783. doi: 10.1155/2014/690783.
  7. Starup-Linde J., Eriksen S.A., Lykkeboe S. et al. Biochemical markers of bone turnover in diabetes patients - a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos. Int. 2014; 25 (6): 1697-1708. doi: 10.1007/s00198-014-2676-7.
  8. Wilson M., Kalamaras J., German M. Expression of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas. Mech. Dev. 2002; 115: 171-176. doi: 10.1016/S0925-4773(02)00118-1.
  9. Вавилова Т.П. Биохимия тканей и жидкостей полости рта. Учебное пособие. 2-е изд., испр. и доп. М.: ГЭОТАР-Медиа. 2011; 208 с.
  10. Zaidi M., Shankar V.S., Huang C.L.-H. et al. Amylin in bone conservation current evidence and hypothetical considerations. Trends Endocrinol. Metab. 1990; 4 (8): 255-259. doi: 10.1016/1043-2760(93)90095-V.
  11. Shanbhogue V.V., Hansen S., Frost M. et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur. J. Endocrinol. 2016; 174: 115-124. doi: 10.1530/EJE-15-0860.
  12. Starup-Linde J., Vestergaard P. Biochemical bone turnover markers in diabetes mellitus a systematic review. Bone J. 2016; 82: 69-78. doi: 10.1016/j.bone.2015.02.019.
  13. Sanchez-Riera L., Carnahan E., Vos T. et al. The global burden attributable to low bone mineral density. Ann. Rheum. Dis. 2014; 73 (9): 1635-1645. doi: 10.1136/annrheumdis-2013-204320.
  14. Napoli N. Schwartz A.V., Palermo L. et al. Risk factors for subtrochanteric and diaphyseal fractures: the study of osteoporotic fractures. J. Clin. Endocrinol. Metab. 2013; 98 (2): 659-667. doi: 10.1210/jc.2012-1896.
  15. Weber D.R., Haynes K., Leonard M.B. et al. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using the Health Improvement Network (THIN). Diabetes Care. 2015; 38: 1913-1920. doi: 10.2337/dc15-0783.
  16. Zaidi M., Shankar V.S., Huang C.L.H. et al. Amylin in bone conservation - current evidence and hypothetical considerations. Trends Endocrinol. Metab. 1993; 4: 255-259. doi: 10.1016/1043-2760(93)90095-V.
  17. Bronský J., Průša R., Nevoral J. The role of amylin and related peptides in osteoporosis. Clinica Chimica Acta. 2006; 373: 9-16. doi: 10.1016/j.cca.2006.05.009.
  18. Li C.I., Liu C.S., Lin W.Y. et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan Diabetes Cohort Study. J. Bone Miner. Res. 2015; 30 (7): 1338-1346. doi: 10.1002/jbmr.2462.
  19. Hough F.S., Pierroz D.D., Cooper C. et al. Mechanisms in endocrinology: mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur. J. Endocrinol. 2016; 174 (4): R127-138. doi: 10.1530/EJE-15-0820.
  20. Zaidi M., Datta H.K., Bevis P.J. et al. Amylin-amide: a new bone-conserving peptide from the pancreas. Exp. Physiol. 1990; 75: 529-536. doi: 10.1113/expphysiol.1990.sp003429.
  21. Vinik A.I., Vinik E.J., Colberg S.R., Morrison S. Falls risk in older adults with type 2 diabetes. Clin. Geriatr. Med. 2015; 31 (1): 89-99. doi: 10.1016/j.cger.2014.09.002.
  22. Cornish J., Callon K.E., Bava U. et al. Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone J. 2001; 29: 162-168. doi: 10.1016/S8756-3282(01)00494-X.
  23. Bala Y., Bui Q.M., Wang X.F. et al. Trabecular and cortical microstructure and fragility of the distal radius in women. J. Bone Miner. Res. 2015; 30 (4): 621-629. doi: 10.1002/jbmr.2388.
  24. Hewston P., Deshpande N. Falls and balance impairments in older adults with type 2 diabetes: thinking beyond diabetic peripheral neuropathy. Can. J. Diabetes. 2016; 40 (1): 6-9. doi: 10.1016/j.jcjd.2015.08.005.
  25. Yu E.W. Thomas B.J., Brown J.K., Finkelstein J.S. Defects in cortical microarchitecture among African-American women with type 2 diabetes. Osteoporos. Int. 2015; 26 (2): 673-679. doi: 10.1007/s00198-014-2927-7.
  26. Farlay D., Armas L.A., Gineyts E. et al. Nonenzymatic glycation and degree of mineralization are higher in bone from fractured patients with type 1 diabetes mellitus. J. Bone Miner. Res. 2016; 31 (1): 190-195. doi: 10.1002/jbmr.2607.
  27. Young A. Amylin: physiology and pharmacology. Amsterdam, London: Elsevier. 2005; 298 р.
  28. Dhaliwal R., Cibula D., Ghosh C. et al. Bone quality assessment in type 2 diabetes mellitus. Osteoporos. Int. 2014; 25 (7): 1969-1973. doi: 10.1007/s00198-014-2704-7.



Abstract - 296

PDF (Russian) - 148

PDF (English) - 19




© 2017 Safarova S.S.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies