Low-molecular-weight fibroblast growth factor-2 — a viable prognostic factor for gastric gastrointestinal stromal tumors

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Aim. To examine the expression of fibroblast growth factor-2 and its isoforms in gastrointestinal stromal tumors and assess the prognostic value of this marker.

Methods. The study included 44 patients with gastric gastrointestinal stromal tumors of the stomach who were prescribed surgical or combined treatment with the targeted drug imatinib (imatinib mesylate). Immunohistochemistry (IHC)-staining and immunoblotting with monoclonal antibodies were used to assess the expression of FGF-2. Statistical analysis for differences in clinical and morphological parameters was performed by using Student’s, Mann–Whitney–Wilcoxon and Fisher’s tests. Differences were considered significant at p < 0.05.

Results. Fibroblast growth factor-2 expression was assessed in tumor tissues in 39 out of 44 analyzed patients. The frequency of fibroblast growth factor-2 expression in the observed patients was 84.6% (33/39). The moderate and strong fibroblast growth factor-2 expression was detected in 21 (53.8%) patients with gastric gastrointestinal stromal tumors. High expression of low-molecular weight (18 kDa) fibroblast growth factor-2 isoform was found in all tumor samples from patients with high-risk gastrointestinal stromal tumor (prognostic group 6) (p=0.039), which indicated the active secretion of this ligand by its signalling pathway in the cancer cells. Patients with high levels of low‐molecular‐weight fibroblast growth factor-2 showed a higher level of Ki-67 proliferative activity (р=0.013) and tumor size (р=0.0017). Patients with increased expression of the low molecular weight isoform of fibroblast growth factor-2 in gastric gastrointestinal stromal tumor had a higher risk of recurrence, as well as larger tumor size and proliferative activity compared with patients without expression of this isoform. The level of fibroblast growth factor-2 expression in tumor samples, determined by immunohistochemistry-staining, increases after initiation of imatinib to based therapy, which may indicate the formation of resistance to this targeted drug and the progression of the disease.

Conclusion. The results of the study suggest that FGF-2 might be an independent prognostic marker of gastric gastrointestinal stromal tumor and a viable therapeutic target.

Full Text

Restricted Access

About the authors

E G Mikheeva

Kazan State Medical University

Email: boichuksergei@mail.ru

Russian Federation, Kazan, Russia

A M Aukhadieva

Kazan State Medical University

Email: boichuksergei@mail.ru

Russian Federation, Kazan, Russia

A G Sabirov

Tatarstan Regional Clinical Cancer Center

Email: boichuksergei@mail.ru

Russian Federation, Kazan, Russia

S V Boichuk

Kazan State Medical University

Author for correspondence.
Email: boichuksergei@mail.ru

Russian Federation, Kazan, Russia


  1. Hirota S., Isozaki K., Moriyama Y., Hashimoto K., Nishida T., Ishiguro S., Kawano K., Hanada M., Kurata A., Takeda M., Muhammad Tunio G., Matsuzawa Y., Kana­kura Y., Shinomura Y., Kitamura Y. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998; 279: 577–580. doi: 10.1126/science.279.5350.577.
  2. Rubin B.P., Singer S., Tsao C., Duensing A., Lux M.L., Ruiz R., Hibbard M.K., Chen C.J., Xiao S., Tuveson D.A., Demetri G.D., Fletcher C.D., Fletcher J.A. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res. 2001; 61: 8118–8121.
  3. Heinrich M.C., Corless C.L., Duensing A., McGree­vey L., Chen C.-J., Joseph N., Singer S., Griffith D.J., Haley A., Town A., Demetri G.D., Fletcher C.D., Fletcher J.A. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003; 299: 708–710. doi: 10.1126/science.1079666.
  4. Joensuu H., Roberts P.J., Sarlomo-Rikkala M., Andersson L.C., Tervahartiala P., Tuveson D., Silberman S., Capdeville R., Dimitrijevic S., Druker B., Demetri G.D. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. 2001; 344: 1052–1056. doi: 10.1056/NEJM200104053441404.
  5. Demetri G.D., Mehren von M., Blanke C.D., Van den Abbeele A.D., Eisenberg B., Roberts P.J., Heinrich M.C., Tuveson D.A., Singer S., Janicek M., Fletcher J.A., Silverman S.G., Silberman S.L., Capdeville R., Kiese B., Peng B., Dimitrijevic S., Druker B.J., Corless C., Fletcher C.D., Joen­suu H. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 2002; 347: 472–480. doi: 10.1056/NEJMoa020461.
  6. Verweij J., Casali P.G., Zalcberg J., LeCesne A., Rei­chardt P., Blay J.-Y., Issels R., van Oosterom A., Hogendoorn P.C., Van Glabbeke M., Bertulli R., Judson I. Progression-free survival in gastrointestinal stromal tumors with high-dose imatinib: Randomized trial. Lancet. 2004; 364: 1127–1132. doi: 10.1016/S0140-6736(04)17098-0.
  7. Gramza A.W., Christopher L.C., Michael C.H. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin. Cancer Res. 2009; 15 (24): 7510–7518. doi: 10.1158/1078-0432.CCR-09-0190.
  8. Agaram N.P., Wong G.C., Guo T., Maki R.G., Sin­ger S., Dematteo R.P., Besmer P., Antonescu C.R. Novel V600E BRAF mutations in imatinib-naive and imatinib-­resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer. 2008; 47: 853–859. doi: 10.1002/gcc.20589.
  9. Sakurama K., Noma K., Takaoka M., Tomono Y., Watanabe N., Hatakeyama S., Ohmori O., Hirota S., Motoki T., Shirakawa Y., Yamatsuji T., Haisa M., Matsuoka J., Tanaka N., Naomoto Y. Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor. Mol. Cancer Ther. 2009; 8: 127–134. doi: 10.1158/1535-7163.MCT-08-0884.
  10. Mahadevan D., Cooke L., Riley C., Swart R., Simons B., Della Croce K., Wisner L., Iorio M., Shakalya K., Garewal H., Nagle R., Bearss D. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene. 2007; 26: 3909–3919. doi: 10.1038/sj.onc.1210173.
  11. Rock E.P., Goodman V., Jiang J.X., Mahjoob K., Verbois S.L., Morse D., Dagher R., Justice R., Pazdur R. Food and Drug Administration drug approval summary: sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma. Oncologist. 2007; 12: 107–113. doi: 10.1634/theoncologist.12-1-107.
  12. Demetri G.D., Reichardt P., Kang Y.-K., Blay J.-Y., Rutkowski P., Gelderblom H., Hohenberger P., Leahy M., von Mehren M., Joensuu H., Badalamenti G., Blackstein M., Le Cesne A., Schöffski P., Maki R.G., Bauer S., Nguyen B.B., Xu J., Nishida T., Chung J., Kappeler C., Kuss I., Laurent D., Casali P.G.; GRID study investigators. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013; 381: 295–302. doi: 10.1016/S0140-6736(12)61857-1.
  13. Boichuk S., Rausch J., Duensing A. New developments in management of gastrointestinal stromal tumors: regorafenib, the new player in the team. Gastrointest. Cancer: Targets and Therapy. 2014; 4: 1–10. doi: 10.2147/GICTT.S20679.
  14. Boichuk S., Galembikova A., Dunaev P., Valeeva E., Shagimardanova E., Gusev O., Khaiboullina S. A ­novel ­receptor tyrosine kinase switch promotes gastrointestinal stromal tumor drug resistance. Molecules. 2017; 22 (12): E2152. doi: 10.3390/molecules22122152.
  15. Boichuk S.V., Galembikova A., Dunaev P., Micheeva E., Valeeva E., Novikova M., Khromova N., Kopnin P. Targeting of FGF-Signaling re-sensitizes Gastrointestinal Stromal Tumors (GIST) to Imatinib in vitro and in vivo. Molecules. 2018; 23: 2643. doi: 10.3390/molecules23102643.
  16. Boichuk S., Galembikova A., Mikheeva E., Bikinieva F., Aukhadieva A., Dunaev P., Khalikov D., Petrov S., Kurtasanov R., Valeeva E., Kireev I., Dugina V., Lushnikova A., Novikova M., Kopnin P. Inhibition of FGF2-mediated signaling in GIST — promising approach for overcoming resistance to Imatinib. Cancers. 2020; 12 (6): 1674. doi: 10.3390/cancers12061674.
  17. Fletcher C.D., Berman J., Corless C., Gorstein F., Lasota J., Longley B.J., Miettinen M., O'Leary T.J., Remotti H., Rubin B.P., Shmookler B., Sobin L.H., Weiss S.W. ­Diagnosis of gastrointestinal stromal tumors: A consensus approach. Int. J. Surg. Pathol. 2002; 2: 81–89. doi: 10.1053/hupa.2002.123545.
  18. Miettinen M., Lasota J. Gastrointestinal stromal tumors: Pathology and prognosis at different sites. ­Semin. Diagn. Pathol. 2006; 2: 70–83. doi: 10.1053/j.semdp.2006.09.001.
  19. Akl M., Nagpal P., Ayoub N.M., Tai B., Prabhu S.A., Capac C.M., Gliksman M., Goy A., Suh K.S. Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget. 2016; 7 (28): 44 735–44 762. doi: 10.18632/oncotarget.8203.
  20. Ibrahimi O.A., Zhang F., Hrstka S.C., Mohammadi M., Linhardt R.J. Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly. Bioche­mistry. 2004; 43: 4724–4730. doi: 10.1021/bi0352320.
  21. Yu P.J., Ferrari G., Galloway A.C., Mignatti P., Pintucci G. Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J. Cell Biochem. 2007; 100: 1100–1108. doi: 10.1002/jcb.21116.
  22. Li F., Huynh H., Li X., Ruddy D.A., Wang Y., Ong R., Chow P., Qiu S., Tam A., Rakiec D.P., Schlegel R., Monahan J., Huang A. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov. 2015; 5: 438–451. doi: 10.1158/2159-8290.CD-14-0763.
  23. Javidi-Sharifi N., Traer E., Martinez J., Gupta A., Taguchi T., Dunlap J., Heinrich M.C., Corless C.L., Rubin B.P., Druker B.J., Tyner J.W. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res. 2014; 75: 880–891. doi: 10.1158/0008-5472.CAN-14-0573.

Supplementary files

Supplementary Files Action
Рис. 1. Экспрессия фактора роста фибробластов-2 в гастроинтестинальных стромальных опухолях (иммуногистохимическое окрашивание): негативная реакция (А); мембранная реакция (В); ядерная реакция умеренной интенсивности (С); яркая ядерная реакция (D)

Download (181KB) Indexing metadata
Рис. 2. Уровень экспрессии изоформ фактора роста фибробластов (FGF-2) (18, 22, 22,5 и 34 кДа) в гастроинтестинальных стромальных опухолях желудка, определяемый методом иммуноблоттинга. Образцы опухолей с высоким ­риском рецидивирования (группа риска 6) выделены пунктирной линией

Download (19KB) Indexing metadata
Рис. 3. A — уровень низкомолекулярной (18 кДа) изоформы фактора роста фибробластов-2 (FGF-2) у пациентов 5-й и 6-й прогностических групп (высокий риск рецидива) и пациентов 2-й и 3-й прогностических групп (низкий риск рецидива), p=0,039 (точный критерий Фишера). B, C — сравнение размеров (p=0,002, критерий Манна–Уитни) и индекса пролиферативной активности (p=0,013, критерий Манна–Уитни) в группах пациентов с гастроинтестинальными стромальными опухолями желудка, положительных и отрицательных по низкомолекулярной (18 кДа) изоформе FGF-2, согласно результатам иммуноблоттинга. Данные представлены медианой и квартильным размахом

Download (30KB) Indexing metadata



Abstract - 37

PDF (Russian) - 2


Article Metrics

Metrics Loading ...



© 2021 Mikheeva E.G., Aukhadieva A.M., Sabirov A.G., Boichuk S.V.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies