Bactericidal capacity of oral neutrophils as a marker for clinical course of inflammatory ­respiratory diseases in children

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Aim. To study the number of neutrophils in the oral cavity, their bactericidal potential, to assess as an indicator for predicting the course of recurrent bronchitis (J40) and community-acquired focal pneumonia in children.

Methods. 87 children between 5 and 10 years old, including 52 children with recurrent bronchitis and 35 with focal community-acquired pneumonia were observed. The control group consisted of 37 conditionally healthy children of a similar age. Viral antigens were studied by chemiluminescence immunoassay. Oral neutrophil counts and functional activity were determined. Antibacterial antibodies were measured by an enzyme-linked immunosorbent assay (ELISA).

Results. 70.11% of patients had a viral antigen, and 57.47% had immunoglobulins M and G against bacterial pathogens. Oral neutrophil counts increased in the main group compared to the control group: up to 163.8±26.5 cells (p <0.001) in recurrent bronchitis, to 110.9±25.5 (p <0.05) in community-acquired pneumonia. By the recovery period, the number of oral neutrophils counts decreased in recurrent bronchitis (1.7 times higher compared to the control group, p <0.01) and remained practically unchanged in community-acquired pneumonia (115.0±26.9, p <0.05). Myeloperoxidase level had opposite changes for the groups compared to the control group: with recurrent bronchitis, it was 1.61±0.09 to the level in the control group (p <0.05), with community-acquired pneumonia — 0.73±0.09 to the level in the control group (p <0.001). The level of lysosomal cationic proteins decreased to 0.77±0.09 to the level in the control group (p <0.05) in recurrent bronchitis, and to 0.80±0.09 (p <0.05) in pneumonia.

Conclusion. In inflammation of the respiratory tract, neutrophil migration to the oral cavity, as well as myelope­roxidase level, increases, indicators of spontaneous luminol-dependent chemiluminescence are activated, and a deficiency of lysosomal cationic proteins occurs; this prevents the penetration of the pathogen into the lower respiratory tract.


Full Text

Restricted Access

About the authors

O I Pikuza

Kazan State Medical University

Email: azakirova@gmail.com

Russian Federation, Kazan, Russia

R A Fayzullina

Kazan State Medical University

Email: azakirova@gmail.com

Russian Federation, Kazan, Russia

A M Zakirova

Kazan State Medical University

Author for correspondence.
Email: azakirova@gmail.com

Russian Federation, Kazan, Russia

Z Ya Suleymanova

Kazan State Medical University

Email: azakirova@gmail.com

Russian Federation, Kazan, Russia

E L Rashitova

Kazan State Medical University

Email: azakirova@gmail.com

Russian Federation, Kazan, Russia

E V Volyanyuk

Kazan State Medical University

Email: azakirova@gmail.com

Russian Federation, Kazan, Russia

References

  1. Immunizaciya, vakciny i biologicheskie preparaty. Pnevmokokkovaya infekciya. (Immunization, vaccines and biologicals. Pneumococcal disease.) https://www.who.int/immunization/ru/ (access date: 21.08.2018). (In Russ.)
  2. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. et al.; Russian Respiratory Society, Interregional association on clinical microbiology and antimicrobial chemotherapy. Clinical guidelines on diagnosis, treatment and prevention of severe community acquired pneumonia in adults. Pulmonologiya. 2014; (4): 13–48. (In Russ.) doi: 10.18093/0869-0189-2014-0-4-13-48.
  3. Ilenkova N.A., Protasova I.N., Sokolovskaya E.S. Community-acquired pneumonia in children caused by pneumococci of MLSB- and M-phenotype: Clinical cases. Current pediatrics. 2017; 16 (2): 175–179. (In Russ.) doi: 10.15690/vsp.v16i2.1720.
  4. Zakirova A.M., Pikuza O.I., Shayapova D.T. et al. Effectiveness of nebulizers in the treatment of respiratory tract respiratory infections in children of different ages. Meditsinskiy sovet. 2020; (1): 152–157. (In Russ.) doi: 10.21518/2079-701Х-2020-1-152-157.
  5. Vavilova V.P., Vavilov A.M., Chercaeva A.H. Prevention of pneumococcal infection in children with chronic diseases of the nasopharynx reduces the incidence of ­other respiratory tract infections: results of a comparative prospective study. Current pediatrics. 2015; 14 (5): 557–563. (In Russ). doi: 10.15690/vsp. v14i5.1439.
  6. Bara­nov A.A., Namazova-Baranova L.S., Vishneva E.A. et al. Primary ciliary dyskinesia in children. Pediatric pharmacology. 2018; 15 (1): 20–31. (In Russ.) doi: 10.15690/pf.v15i1.1840.
  7. Korovkina E.S., Kostinov M.P. Immune mechanisms of community-acquired pneumonia and copd due to infectious etiology and methods of immunotherapy. Journal of microbiology, epidemiology and immunobiology. 2019; (2): 100–109. (In Russ.) doi: 10.36233/0372-9311-2019-2-100-109.
  8. Namazova-Baranova L.S., Fedoseenko M.V., Vishneva E.A. et al. Theoretical background and real results: A data review on vaccine prevention of pneumococcal infection in the world. Pediatric pharmacology. 2018; 15 (1): 58–74. (In Russ.) doi: 10.15690/pf.v15i1.1844.
  9. Suleymanova Z.Ya., Zakirova A.M. Clinical and diagnostic value of indicators of interferon status and antiendotoxin protection in patients with recurrent bronchitis. Diagnostic issues in pediatrics. 2009; 1 (5): 17–19. (In Russ.)
  10. Andryukov B.G., Bogdanova V.D., Lyapun I.N. Phenotypic heterogeneity of neutrophils: new antimicrobic characteristics and diagnostic technologies. Russian journal of hematology and transfusiology. 2019; 64 (2): 211–221. (In Russ.) doi: 10.35754/0234-5730-2019-64-2-211-221.
  11. Wang J., Hossain M., Thanabalasuriar A. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science. 2017; 358 (359): 111–116. doi: 10.1126/science.aam9690.
  12. Zakirova A.M., Pikuza O.I., Suleymanova Z.Ya., Kali­mullina A.V. The content of oral neutrophils in community-acquired pneumonia and bronchitis in school children. Prakticheskaya Meditsina. 2012; (7-2): 45. (In Russ.)
  13. Jones H.R., Robb C.T., Perretti M. et al. The role of neutrophils in inflammation resolution. Semin. Immunol. Acad. Press. 2016; 289 (2): 137–145. doi: 10.1016/j.smim.2016.03.007.
  14. Kaur M., Singh D. Neutrophil chemotaxis caused by chronic obstructive pulmonary disease alveolar macrophages: the role of CXCL8 and the receptors CXCR1/CXCR2. J. Pharmacol. Exp. Therap. 2013; 347 (1): 173–180. DOI: 0.1124/jpet.112.201855.
  15. Dolgushin I.I., Mezentseva E.A., Savochkina A.Yu. et al. Neutrophil as a multifunctional relay in immune system. Infektsiya i immunitet. 2019; 9 (1): 9–38. (In Russ.) doi: 10.15789/2220-7619-2019-1-9-38.
  16. Andryukov B.G., Somova L.M., Drobot E.I., Matosova E.V. Defensive strategy of neutrophilic granulocytes against pathogenic bacteria. Zdorov'e, meditsinskaya ekologiya. Nauka. 2017; (1): 4–18. (In Russ.) doi: 10.5281/zenodo.345606.
  17. Nadzhimitdinov S.T. Osnovnye laboratornye metody issledovaniya morfologii kletok krovi. (Basic laboratory methods for studying the morphology of blood cells.) Tashkent. 1970; 54 р. (In Russ.)
  18. Slavinskiy A.A., Nikitina G.V. Tsitokhimicheskoe vyyavlenie kationnykh belkov v granulotsitakh krovi amido chernym 10B dlya vizual'noy otsenki i komp'yuternogo analiza izobrazheniya. Klinicheskaya laboratornaya diagnostika. 1999; (2): 35–37 (In Russ.)
  19. Novikova I.A. Vvedenie v klinicheskuyu laboratornuyu diagnostiku. (Introduction to Clinical Laboratory Diagnostics.) Minsk: Vysheyshaya shkola. 2018; 157–158. (In Russ.)

Supplementary files

Supplementary Files Action
1.
Рис. 1. Структура сопутствующих хронических заболеваний у пациентов обследованных групп

Download (36KB) Indexing metadata
2.
Рис. 2. Отклонения от нормальных показателей крови у обследованных детей; СОЭ — скорость оседания эритроцитов

Download (20KB) Indexing metadata

Statistics

Views

Abstract - 30

PDF (Russian) - 1

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


© 2020 Pikuza O.I., Fayzullina R.A., Zakirova A.M., Suleymanova Z.Y., Rashitova E.L., Volyanyuk E.V.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies