Alteration of medical radiation exposure annual collective effective dose of the population of Tatarstan from 1998 to 2010

Cover Page


Cite item

Full Text

Abstract

Aim. To find out the contemporary principles of collective effective dose of medical radiation formation gained due to medical X-ray and radiological examinations. Methods. Data analysis of radiation and hygiene passports of Republic of Tatarstan territory for the period from 1998 to 2010 was fulfilled. Change of healthcare radiation sources number over time was defined. Number of performed medical X-ray and radiological examinations, average patient’s individual and total effective radiation doses were compared. Results. The number of medical X-ray and radiological examinations increased annually. The rate of different X-ray and radiological examinations as well as gained total effective radiation doses has changed significantly during the analyzed period of time. Use of digital technologies in radiology allowed to decrease average patient’s individual doses to 0.16 mSv for chest photofluorography and to 0.15 mSv for standard X-ray. In recent years, X-ray computed tomography is the largest contribution (40.6%) to the collective effective medical exposure dose of the population. Conclusion. Ionizing radiation use in medical practice remains one of the leading sources of the combined population radiation, primarily due to modern X-ray and radiological examinations; it requires attention and development of special arrangement, technical, prevention measures to decrease unfavorable influence of radiation to population.

Full Text

Медицинская аппаратура является доминирующим источником искусственного излучения, медицинское облучение занимает второе место вслед за природным, значительно превышая дозы от других техногенных источников [1, 8]. Помимо весомого вклада в общую структуру облучения населения, медицинские источники характеризуются высокой мощностью дозы; воздействием, как правило, на больной или ослабленный организм; преимущественным облучением одних и тех же радиочувствительных органов; частым облучением групп высокого риска: детей, женщин и людей детородного возраста [6]. По этим причинам в нормальных, неаварийных условиях медицинское облучение по биологическому действию превосходит все остальные виды радиационного воздействия вместе взятые [9]. До недавнего времени рентгенография и флюорография обусловливали более половины (63,1%) медицинской дозы облучения населения [2]. В совершенствовании и оптимизации данных видов рентгенологических исследований находили главный резерв снижения уровня медицинского облучения населения [4]. За последние годы значительно обновлён парк флюорографических и рентгенографических аппаратов, внедрён инструментальный контроль и учёт доз облучения пациентов, налажен контроль эксплуатационных параметров используемого оборудования, проведены организационные мероприятия по снижению количества рентгеноскопических исследований. Цель нашего исследования - изучение динамики радиационно-гигиенических показателей при выполнении флюорографических, рентгенографических и рентгеноскопических исследований, а также определение современных доминирующих факторов радиационного воздействия на население при выполнении медицинских рентгенорадиологических исследований. В соответствии с Федеральным законом «О радиационной безопасности населения» [5] в целях оценки вредного воздействия радиационного фактора на население, планирования и проведения мероприятий по обеспечению радиационной безопасности, анализа эффективности этих мероприятий на территории Российской Федерации с 1998 г. введена радиационно-гигиеническая паспортизация организаций и территорий. В качестве первичного материала для анализа мы использовали радиационно-гигиенические паспорта территории Республики Татарстан (РТ) за период с 1998 по 2010 гг. За период с 1998 по 2005 гг. количество медицинских учреждений, использующих источники ионизирующего излучения, постепенно уменьшалось: с 416 в 1998 г. до 240 в 2005 г. Начиная с 2006 г., происходило постепенное увеличение количества лечебно-профилактических учреждений, использующих такие источники: с 258 в 2006 г. до 360 в 2010 г. Учёт количества эксплуатируемых рентгенодиагностических аппаратов в рамках радиационно-гигиенических паспортов был введён с 2003 г. Отмечена тенденция к увеличению количества данного вида источников ионизирующего излучения в медицинских учреждениях: с 585 в 2003 г. до 1043 в 2010 г. Самый массовый вид рентгенологических процедур - профилактическая флюорография органов грудной полости с целью выявления туберкулёза органов дыхания на ранних стадиях и другой патологии. Ежегодно более 50% взрослого населения РТ подвергаются облучению при выполнении этой процедуры. Оценим коллективную эффективную дозу от данного вида рентгенологического исследования. По данным радиационно-гигиенические паспортов, значения коллективных эффективных доз, несмотря на увеличение количества выполненных флюорографических процедур, ежегодно снижаются (рис. 1). По нашему мнению, это связано с двумя причинами: (1) заменой плёночных флюорографов на цифровые [2]; (2) внедрением, начиная с 2003 г., инструментального контроля и учёта доз облучения пациентов при проведении рентгенологических исследований, в том числе флюорографических, что способствует объективизации данных об уровне облучения обследуемых [3]. Это подтверждают и данные о средних индивидуальных дозах облучения населения РТ при профилактической флюорографии (рис. 2). Действительно, до 2002 г. при выполнении каждой рентгенологической процедуры в отчётных формах регистрировали индивидуальную дозу облучения пациента согласно табличным данным методических указаний по контролю эффективных доз облучения пациентов при медицинских рентгенологических исследованиях. При этом не учитывали многие факторы, которые влияют на дозу облучения: тип аппарата, его техническое состояние, условия проведения исследования и др. Так, при выполнении флюорографии органов грудной полости в карту учёта доз облучения пациента вносили значение индивидуальной дозы облучения, составляющее 0,8 мЗв, вне зависимости от того, на каком флюорографе проводили исследование. Таким образом, учитывали лишь усреднённое значение индивидуальных доз. Начиная с 2003 г., было начато поэтапное оснащение парка рентгенодиагностического оборудования, в том числе и флюорографов, рентгеновскими клиническими дозиметрами ДРК-1 и ДРК-1М. Это способствовало объективизации доз облучения пациентов, так как в учётных формах стали регистрировать измеренные значения доз. Массовое переоснащение парка флюорографической техники на малодозовые цифровые аппараты и инструментальный учёт доз облучения привели к значительному снижению как коллективных доз облучения при проведении флюорографии (см. рис. 1), так и средних индивидуальных доз (см. рис. 2). При этом увеличение количества проведённых процедур в год не вызывает увеличения коллективных доз облучения. Рентгенография также служит важным видом рентгенологических процедур. Без рентгенографии невозможно диагностировать патологию опорно-двигательного аппарата, зачастую нельзя выявить патологию органов дыхания, в меньшей степени - патологию других органов и систем. За период с 1998 по 2010 гг. отмечен устойчивый рост количества выполненных рентгенографических процедур: с 1 730 840 в 1998 г. до 3 253 666 в 2010 г. (0,9 исследования на 1 взрослого жителя РТ в год). В настоящее время каждому взрослому жителю РТ рентгенографическое исследование выполняют в среднем практически 1 раз в год. Несмотря на увеличение количества ежегодно выполняемых рентгенографических процедур, показатели коллективных эффективных доз вследствие облучения при данном виде исследования имеют отчётливую тенденцию к снижению (рис. 3). Рентгенография с каждым годом становится всё более безопасной и доступной. На степень безопасности влияют инструментальный контроль с учётом доз облучения, начатый в 2003 г., контроль эксплуатационных параметров рентгеновских аппаратов, а также внедрение цифровых рентгенологических технологий и организация сервисного технического обслуживания оборудования. Это способствует снижению такого показателя, как средняя индивидуальная доза, при проведении рентгенографии (рис. 4). До недавнего времени рентгеноскопические процедуры вносили значительный вклад в коллективную эффективную дозу облучения населения. На сегодняшний день объём рентгеноскопических процедур значительно снизился по сравнению с уровнем 1990-х годов (рис. 5). Рентгеноскопические процедуры выполняют строго по клиническим показаниям. В связи с сокращением количества процедур уменьшается и коллективная эффективная доза облучения за счёт данного вида исследований (рис. 6). Инструментальный контроль и учёт доз облучения внедряется и при рентгеноскопии, что находит своё отражение в отчётной форме федерального государственного статистического наблюдения 3-ДОЗ и в радиационно-гигиенических паспортах организаций и территорий. Таким образом, за рассматриваемый период времени достигнуты значительные результаты в обеспечении радиационной безопасности пациентов и населения при выполнении флюорографических, рентгенографических и рентгеноскопических процедур. Несмотря на тот факт, что за рассматриваемый период времени отмечена незначительная тенденция к увеличению количества выполняемых флюорографических исследований, которые остаются преобладающим видом рентгенорадиологических процедур, их доля в общей структуре проводимых исследований несколько снизилась: с 46,9% в 1998 г. до 35,9% в 2010 г. Вместе с тем, вклад флюорографии в общую структуру медицинского облучения снизился значительно: с 38,9% в 1998 г. до 15,9% в общей структуре коллективных эффективных доз в 2010 г. С момента внедрения инструментального учёта и контроля доз облучения, то есть с 2003 по 2010 гг., средние индивидуальные дозы облучения при выполнении флюорографических исследований снизились с 0,77 мЗв на процедуру до 0,16 мЗв на процедуру, то есть в 4,8 раза. По нашему мнению, этому способствовала поэтапная замена плёночной технологии получения флюорографического изображения на малодозовую цифровую. На фоне ежегодного увеличения количества выполняемых рентгенографических процедур возрастает и доля рентгенографических исследований в общей структуре медицинских рентгенорадиологических процедур, которая возросла за рассматриваемый период на 14,2% и в 2010 г. составила 60,4%. Проведённые технические, организационные и медико-профилактические мероприятия способствовали снижению средней индивидуальной дозы при проведении рентгенографических процедур. Этот показатель, начиная с 2003 г., снизился в 2,3 раза (с 0,35 до 0,15 мЗв на процедуру). Это объясняет тот факт, что при значительном увеличении абсолютного количества ежегодно выполняемых исследований годовая коллективная доза облучения за счёт рентгенографических процедур имеет устойчивую тенденцию к снижению, а вклад рентгенографических исследований в общую структуру медицинского облучения остался практически неизменным (20,2% - в 1998 г., 24,9% - в 2010 г.). В начале 2000-х годов многие авторы указывали на необходимость внедрения организационных мероприятий, направленных на сокращение количества рентгеноскопических процедур [7], замену их на менее дозообразующие процедуры. Действительно, за рассматриваемый период времени количество ежегодно выполняемых рентгеноскопий сократилось в 2,7 раза: cо 130 857 исследований в 1998 г. до 48 847 исследований в 2010 г. В общей структуре ежегодно выполняемых рентгенорадиологических исследований вклад рентгеноскопии уменьшился с 3,7% в 1998 г. до 0,9% в 2010 г. Показатели коллективной эффективной дозы при проведении данного вида процедур снизились в 15,7 раз: с 1308,6 чел.-Зв в 1998 г. до 83,3 чел.-Зв в 2010 г. В значительной степени наряду с организационными мероприятиями такому снижению способствовало техническое переоснащение службы лучевой диагностики, использование инструментальных методов учёта и контроля доз облучения пациентов. В общей структуре ежегодных коллективных эффективных доз медицинского облучения доля рентгеноскопических процедур за период с 1998 по 2010 гг. снижена с 38,2 до 4,2%. Вместе с тем, ежегодно происходит увеличение объёмов выполняемых рентгенорадиологических исследований, в первую очередь за счёт широкого внедрения современных методов лучевой диагностики. Так, по данным радиационно-гигиенических паспортов за период с 1998 по 2010 гг., количество рентгенорадиологических процедур, проводимых ежегодно в РТ, возросло в абсолютных числах с 3 544 599 в 1998 г. до 5 388 392 в 2010 г., при этом количество рентгенологических процедур, приходящееся в среднем на 1 жителя РТ, в 1998 г. составляло 0,94, а в 2010 г. - 1,43. Изменяется структура проводимых исследований и формируемых коллективных эффективных доз облучения пациентов и населения (табл. 1). На первое место по вкладу в медицинское облучение пациентов и населения региона выходит рентгеновская компьютерная томография, которая в последние годы становится рутинным методом, что требует отдельного рассмотрения. ВЫВОДЫ 1. Значительные успехи в снижении коллективных эффективных и средних индивидуальных доз облучения пациентов и населения достигнуты в области флюорографических и рентгенографических исследований. Благодаря использованию цифровых технологий, высокочувствительных детекторов рентгеновского излучения средние индивидуальные дозы при флюорографии снижены до 0,16 мЗв на процедуру, при рентгенографии - до 0,15 мЗв на процедуру. 2. За последние годы значительно изменились структура выполняемых рентгенорадиологических исследований и вклад различных их видов в годовую коллективную эффективную дозу облучения населения, пациентов и персонала. Так, значительно сократилось количество выполняемых рентгеноскопических процедур, в силу чего коллективная эффективная доза облучения населения снизилась с 1308,6 чел.-Зв до 83,3 чел.-Зв. 3. В последнее время наибольший вклад (до 40,6%) в коллективную эффективную дозу медицинского облучения населения определяет рентгеновская компьютерная томография. 4. Использование ионизирующего излучения в медицинской практике на современном этапе остаётся одним из ведущих источников облучения населения и пациентов, прежде всего за счёт новых, ставших широко доступными методов лучевой диагностики. Это требует внимания и принятия мер организационного, технического, медико-профилактического характера в целях научно обоснованного уменьшения неблагоприятного действия радиационного фактора на пациентов и население. Рис. 2. Динамика значений средних индивидуальных доз облучения населения при проведении флюорографии органов грудной полости за период с 1998 по 2010 гг. (мЗв на процедуру). р_1.tif р_2.tif Рис. 1. Динамика значений коллективных эффективных доз облучения при проведении флюорографических процедур за период с 1998 по 2010 гг. (чел.-Зв). р_3.tif Рис. 3. Динамика значений коллективных эффективных доз облучения населения вследствие выполненных рентгенографических процедур за период с 1998 по 2010 гг. (чел.-Зв). Рис. 4. Динамика значений средних индивидуальных доз облучения пациентов при проведении рентгенографических процедур за период с 1998 по 2010 гг. (мЗв на процедуру). р_4.tif Р_5.tif Рис. 5. Динамика количества выполненных рентгеноскопических процедур за период с 1998 по 2010 гг. (абсолютные числа). Рис. 6. Динамика значений коллективных эффективных доз облучения населения вследствие выполненных рентгеноскопических процедур за период с 1998 по 2010 гг. (чел.-Зв). Р_6.tif Таблица 1 Структура выполненных рентгенорадиологических процедур и коллективных эффективных доз медицинского облучения населения за период с 1998 по 2010 гг. Вид процедуры Вклад процедуры в общую количественную структуру выполненных процедур за год, % / вклад процедуры в общую структуру медицинского облучения населения за год, % 1998 2000 2002 2004 2006 2008 2010 Флюорография 46,9/38,9 84,7/55,4 47,3/48,8 41,8/51,1 41,1/33,5 39,0/19,8 35,9/15,9 Рентгенография 48,8/20,2 5,5/1,8 48,8/25,1 53,7/26,0 56,0/29,6 58,0/30,0 60,4/24,9 Рентгеноскопия 3,7/38,2 4,0/32,4 1,6/20,8 1,3/8,3 1,1/8,5 0,7/10,1 0,9/4,2 Рентгеновская компьютерная томография 0,4/1,9 1,7/7,7 0,5/3,1 0,9/9,0 1,1/17,6 1,5/27,3 2,1/40,6 Радионуклидные исследования 0,2/0,8 0,3/1,5 0,2/1,4 0,3/2,3 0,4/2,1 0,4/2,3 0,3/1,9 Прочие исследования Нет данных 3,8/1,2 1,6/0,8 2,0/3,3 0,3/8,7 0,4/10,5 0,4/12,5
×

About the authors

S A Ryzhkin

Kazan State Medical University, Kazan, Russia

Email: rsa777@inbox.ru

S I Ivanov

Russian Medical Academy of Post-Graduate Education, Moscow, Russia

M A Patyashina

Federal Service for Supervision of Consumer Rights Protection and Human Welfare in the Republic of Tatarstan, Kazan, Russia

R K Ismagilov

Federal Service for Supervision of Consumer Rights Protection and Human Welfare in the Republic of Tatarstan, Kazan, Russia

References

  1. Горский А.А., Перминова Г.С., Матюхин С.В. и др. Радиационная безопасность населения при проведении медицинских рентгенорадиологических процедур // Здравоохранение. - 2009. - №12. - С. 45-49.
  2. Михайлов М.К., Рыжкин С.А., Иванов С.И. и др. Обеспечение радиационной безопасности экономически активного населения при проверочной флюорографии органов грудной полости с использованием цифровых технологий // Обществен. здоров. и здравоохран. - 2006. - №4. - C. 97-101.
  3. Рыжкин С.А., Иванов С.И., Валитов Ф.М., Зарипов Р.А. Повышение медико-социальной эффективности профилактических рентгенологических исследований органов грудной клетки с использованием цифровых технологий // Здравоохран. и мед. техника. - 2005. - №10. - С. 50-52.
  4. Рыжкин С.А., Михайлов М.К., Зарипов Р.А. Основные этапы становления и перспективные направления развития системы массовой профилактической флюорографии органов грудной клетки // Казан. мед. ж. - 2006. - №2. - С. 134-140.
  5. Собрание законодательства Российской Федерации, 1996, №3, ст. 141.
  6. Ставицкий Р.В. Медицинская рентгенология: технические аспекты, клинические материалы, радиационная безопасность. - М.: МНПИ, 2003. - 344 с.
  7. Шигапов Р.М., Морозов В.Г., Исмагилов Р.К., Чупрун В.Ф. К результатам радиационно-гигиенической паспортизации территории Зеленодольского района Республики Татарстан в 1999 году // Казан. мед. ж. - 2001. - №4. - С. 304-308.
  8. ICRP (1996). International Commission on Radiological Protection. Radiological protection and safety in medicine. - ICRP Publication 73. - Annals of the ICRP 26, N 2 (Pergamon Press, Oxford).
  9. UNSCEAR 2000 report. Vol. I. Sources and effects of ionizing radiation. - http://www.unscear.org/unscear/publications/2000_1.html (дата обращения: 24.06.2012).

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2012 Ryzhkin S.A., Ivanov S.I., Patyashina M.A., Ismagilov R.K.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies