Somatic disorders in autism as one of the factors of behavioral and social interaction disorders

Abstract


Autism is a pressing global problem in a number of medical and related scientific disciplines. For autism, a polysystemic feature is typical, and neurological changes are usually accompanied by somatic ones, most often affecting the intestine, pancreas, and often lungs, pelvic organs, kidneys, adrenal glands and other organs. It is not surprising that the mortality from somatic causes in such children exceeds the mortality of healthy children of the same age groups by 3–10 or more times (depending on the severity of autism). Many studies report a high prevalence of gastrointestinal symptoms in autistic people. The most common of these is chronic constipation (22% on average). The functional interaction of the gastrointestinal tract and the central nervous system is due to the presence of various connections and includes the autonomic nervous, immune and neuroendocrine systems. Of particular importance in gastrointestinal disorders and the pathogenesis of autism is the intestinal microbiota, a complex bacterial community located in the gastrointestinal tract. Under the influence of external and internal factors, the microbiota changes the permeability of the intestinal and blood-brain barriers, and the metabolites produced by the altered microbiota can enter the bloodstream and the central nervous system, disrupting its functioning. It was proven that there are pronounced differences between the intestinal microbiota of healthy children and autistic children, and directed individual correction often leads to normalization or significant improvement in social and communicative behavior and other deviations typical of children with autism. Thus, violations in the somatic sphere can increase the severity of the clinical presentation of autism, causing various behavioral and communication disorders. Identification of the spectrum of these disorders, as well as the study of the mechanisms of their development and interrelationship, is an urgent problem, the solution of which may be important for determining the tactics of complex therapy of patients with autism spectrum disorders.


Расстройства аутистического спектра (РАС) — актуальная проблема мирового масштаба по ряду медицинских и сопряжённых с ними научных дисциплин. Аутизм по мере новых нейрофизиологических, нейропсихологических, фармакологических и генетических достижений в его изучении открывает перед исследователями всё новые задачи, что поддерживает постоянный научный интерес к его изучению [1–3].

В связи с неоднозначными подходами к оценке аутистических расстройств в разных странах распространённость аутизма у детей колеблется от 4 до 26 случаев на 10 тыс. детского населения, причём у мальчиков она в 4–4,5 раза выше, чем у девочек [4]. Важно отметить, что распространённость РАС в мире растёт: 1/2000–1/2500 детского населения — до 1990-х годов, 1/476–1/323 — в 1990-е годы, 1/91–1/169 — после 2000 г. Анализ данных позволяет заключить, что «эпидемия аутизма» не отражает истинного увеличения заболеваемости, а объясняется большей осведомлённостью общества и врачей, а также расширением диагностических критериев [5–9].

Согласно современным представлениям, РАС — гетерогенная группа нарушений психического развития, характеризующихся расстройством способности к социальному взаимодействию, ограничением интересов и стереотипным поведением. Признаки РАС начинают проявляться в раннем детском возрасте и далее персистируют [10, 11].

Для аутизма типична полисистемность нарушений, причём неврологические изменения, как правило, сопровождаются соматическими, чаще всего затрагивающими кишечник, поджелудочную железу, нередко — лёгкие, тазовые органы, почки, надпочечники и другие органы [12, 13]. Не удивительно, что смертность от соматических причин у таких детей в 3–10 раз и более (в зависимости от тяжести аутизма) превышает смертность здоровых детей соответствующих возрастных групп [14].

В этиологии РАС важную роль играет сочетанное неблагоприятное воздействие биологических и социальных факторов — генетических, эпигенетических, инфекционных, аутоиммунно-иммунных, метаболических, нутрициональных и токсических. Современные исследования демонстрируют высокую значимость в развитии аутизма хромосомных и генетических мутаций [15–17]. В то же время в патогенезе аутизма могут участвовать самые разные факторы среды: техногенное воздействие, несбалансированное питание, нарушения микробиоценоза, микроволновые излучения, способные вызывать стойкие изменения в организме женщины во время беременности, пагубно влияющие на развивающийся плод [18, 19].

РАС следует рассматривать как группу мультисистемных заболеваний, при которых возникают патологические изменения в разных органах, причём, помимо центральной нервной системы, нарушаются функции желудочно-кишечного тракта, вегетативной нервной системы и иммунных процессов [20]. Во многих исследованиях сообщают о высокой распространённости желудочно-кишечных симптомов у аутичных людей [21].

Оценки распространённости желудочно-кишечной проблемы у детей с РАС варьируют от 9 до 70% [22–25], но частота может даже достигать 91% [26]. Эти проблемы способны варьировать от лёгкого гастроэзофагеального рефлюкса до более серьёзных симптомов, таких как хронический запор, боль в животе и постоянная диарея [27, 28]. Наиболее часто встречается хронический запор (в среднем 22%) [23].

Функциональное взаимодействие желудочно-кишечного тракта и центральной нервной системы обусловлено наличием различных связей и включает вегетативную нервную, иммунную и нейроэндокринную системы.

Особое значение в нарушениях желудочно-кишечного тракта и патогенезе РАС имеет микробиота кишечника — сложное бактериальное сообщество, расположенное в желудочно-кишечном тракте [21, 29]. Существуют убедительные доказательства того, что кишечная микробиота влияет на развитие мозга [30], нейрогенез [31] и взаимодействует с кишечной и центральной нервной системами через связь по оси кишечника и мозга [32, 33]. Это взаимодействие происходит, по-видимому, за счёт продукции и секреции множества биологически активных соединений — нейромедиаторов, гормонов, кофакторов, ростовых факторов, модулируя иммунные, гормональные и нервные функции организма человека [31].

Под воздействием внешних и внутренних факторов микробиота меняет проницаемость кишечного и гематоэнцефалического барьеров, и в этом случае метаболиты, вырабатываемые изменённой микробиотой, могут попадать в кровоток и центральную нервную систему, тем самым нарушая её функционирование [21]. Так, микробиота способна синтезировать и высвобождать продукты (нейротоксины, нейромедиаторы, липополисахариды, амилоиды и т.п.), которые могут негативно влиять на нейрохимию центральной нервной системы, способствуя развитию и/или прогрессированию различных заболеваний, включая РАС [34].

Доказано, что между микробиотами кишечника здоровых детей и детей-аутистов есть ярко выраженные различия [35], а направленная индивидуальная коррекция зачастую ведёт к нормализации или существенному улучшению социально-коммуникативного поведения и других девиаций, типичных для детей с аутизмом [14].

В основе механизма взаимодействия микробиоты с нервной системой, возможно, лежит модуляция нейротрансмиттеров хозяев и связанных с ними путей. Основные участники этого взаимодействия — дофамин, серотонин, гамма-аминомасляная кислота, ацетилхолин, глутамат и гистамин, которые играют важную роль в патогенезе аутистического расстройства [36, 37].

Изменение микробиоты кишечника и нарушение модуляции нейротрансмиттеров при аутизме играют немаловажную роль не только в поведенческих нарушениях, таких как тревожность [38] и депрессия [39], но и в нарушениях моторики кишечника [40] и висцеральной боли [41]. Более того, эти симптомы усугубляются многочисленными нарушениями вегетативной регуляции, которые были зарегистрированы у детей с аутизмом.

У аутичных людей проявляются многие симптомы повышенной исходной симпатической активности и плохой вегетативной регуляции, что приводит к снижению парасимпатического тонуса [42], о чём свидетельствуют желудочно-кишечные расстройства (запоры и расстройства желудка) [43, 44], снижение дыхательных индуцированных синусовых аритмий сердца (изменение вагусного, или парасимпатического, тонуса) [45–47] и усиление реакции кожной проводимости [48].

В настоящее время полагают, что дисфункция вегетативной нервной системы у детей имеет отношение к развитию у них когнитивных, аффективных и поведенческих нарушений, подтверждена также роль вегетативной нервной системы в развитии у ребёнка социальных навыков [49–53].

Выдвинуты гипотезы о наличии в патогенезе аутизма чувствительности к глютену, главным образом основанные на теории экзорфиновой интоксикации: через слизистую оболочку кишечника в кровь проникают негидролизованные белки типа глютена и казеина. Большое количество коротких пептидов вызывает иммунный ответ, что отражается непосредственно на нервной системе путём токсического действия на нервные клетки. В результате дефицита кишечных пептидаз в просвете кишки при РАС может также появляться избыточное количество непереваренных пептидов [54].

Нарушения проницаемости и кишечного пищеварения — факторы, положенные в основу опиоидной гипотезы патогенеза аутизма, выдвинутой P. Shattock и соавт. [55]. Эта гипотеза подтверждается исследованием Eufemia и соавт. [56], в котором показано, что нарушения кишечной проницаемости выявлены у 9 из 21 ребёнка с РАС, при этом у 40 детей контрольной группы подобных нарушений не было.

Однако существует ряд исследований, которые в корне опровергают выводы по эффективности безглютеновой диеты. Так, Buie [57] провёл анализ всех имеющихся на тот момент исследований по поводу эффективности такой диеты при аутизме и пришёл к выводу, что в настоящее время нет достаточных доказательств в поддержку использования безглютеновой диеты в лечении аутизма.

Особое место занимают исследования, посвящённые взаимодействию у пациентов с РАС нервной и иммунной систем. Регуляцию взаимодействия этих систем обеспечивают специфические белки — цитокины, синтезируемые лейкоцитами и другими клетками организма. Как правило, противовоспалительные факторы синтезируют лимфоциты, а провоспалительные — моноцитарно-макрофагальные клетки. Большинство исследователей иммунного статуса пациентов с аутизмом сообщают о повышении уровня провоспалительных цитокинов [58]. Именно эти цитокины и нейротропные аутоантитела могут быть ведущими факторами в развитии и поддержании воспалительных изменений в стенках желудочно-кишечного тракта и поведенческих (неврологических) нарушений у детей-аутистов [59].

Описано наличие различных нарушений функций иммунной системы у людей с РАС, которые выражаются в виде пищевой аллергии, аллергического ринита и атопического дерматита [60, 61], а также аутоиммунных расстройств, таких как псориаз [62].

На модели аутизма на животных, индуцированной пренатальным воздействием вальпроевой кислоты, в экспериментальной группе обнаружен уменьшенный размер вилочковой железы (тимуса) по сравнению с контрольными животными [63]. Это указывает на то обстоятельство, что развитие T-клеток также может быть нарушено при аутизме, а это способно стать причиной дисфункций как Т-, так и В-клеток, наблюдаемых при РАС, включая нейровоспаление.

Анализ представленных материалов научных публикаций свидетельствует о гетерогенности РАС и взаимосвязи нейробиологических механизмов при развитии нервно-психических, соматических и иммунных нарушений. Более того, нарушения в соматической сфере способны приводить к негативным изменениям функций центральной нервной системы и вызывать различные поведенческие и коммуникативные нарушения. Выявление спектра этих нарушений, а также изучение механизмов их развития и взаимосвязи — актуальная проблема, решение которой может иметь большое значение при определении тактики комплексной терапии пациентов с РАС.

 

Работа частично выполнена при финансовой поддержке РФФИ и Правительства Республики Татарстан в рамках научных проектов №18-44-160009 и 18-00-01658-КОМФИ.

Авторы заявляют об отсутствии конфликта интересов по представленной статье.

D V Ivanova

Kazan State Medical University

Email: auziganshin@gmail.com
Kazan, Russia

I I Semina

Kazan State Medical University

Email: auziganshin@gmail.com
Kazan, Russia

A U Ziganshin

Kazan State Medical University

Author for correspondence.
Email: auziganshin@gmail.com
Kazan, Russia

  1. Baranov A.A., Maslova O.I., Namazova-Baranova L.S. Ontogenesis of the neurocognitive development of a child. Vestnik RAMN. 2012; (8): 26–34. (In Russ.)
  2. Maslova O.I., Baranov A.A., Namazova-Baranova L.S. et al. Current aspects of the study of the cognitive sphere in child development. Pediatricheskaya farmakologiya. 2012; 9 (6): 61–72. (In Russ.)
  3. Karkashadze G.A., Maslova O.I., Namazova-Baranova L.S. Actual problems of diagnosing and treating mild cognitive impairment in children. Pediatricheskaya farmakologiya. 2011; 8 (5): 37–41. (In Russ.)
  4. Chakrabarti S., Fombonne E. Pervasive developmental disorders in preschool children: confirmation of high prevalence. Am. J. Psychiatry. 2005; 162: 1133–1141. doi: 10.1176/appi.ajp.162.6.1133.
  5. Fombonne E. Is there an epidemic of autism? Pediatrics. 2001; 107 (2): 411–412. doi: 10.1542/peds.107.2.411.
  6. Mulvihill B., Wingate M., Kirby R.S. et al. Preva­lence of autism spectrum disorders — Autism and deve­lopmental disabilities monitoring network, United States, 2006. MMWR Surveill Summ. 2009; 58 (10): 1–20. PMID: 20023608.
  7. Simashkova N.V., Koval’-Zaytsev A.A., Zvereva N.V., Khromov A.I. Cognitive deficit in the structure of autism spectrum disorders. Psykhiatriya. 2010; (6): 5–15. (In Russ.)
  8. Simashkova N.V. Rasstroystva autisticheskogo spektra u detey. (Disorders of the autism spectrum in children.) Moscow: Avtorskaya akademiya. 2013; 8–30. (In Russ.)
  9. Tiganov A.S. Psikhiatriya. (Psychiatry.) Guide for doctors. Moscow: Miditsina. 2012; 12–36. (In Russ.)
  10. Simashkova N.V., Makushkin E.V. Rasstroystva autisticheskogo spektra: diagnostika, lechenie, nablyudenie. (Autism Spectrum Disorders: diagnosis, treatment, observation.) Clinical recommendations (treatment protocol). 2015; 50 р. (In Russ.)
  11. Diagnostic and statistical manual of mental disorders. Fifth edition. Arlington: American Psychiatric Association. 2013. doi: 10.1176/appi.books.9780890425596.
  12. Poletaev A., Poletaeva A., Pukhalenko A. et al. Adaptive maternal immune deviations as a ground for autism spectrum disorders development in the child. Folia Med. 2014; 56 (2): 73–80. doi: 10.2478/folmed-2014-0011.
  13. Rossignol D.A., Frye R.E. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry. 2012; 17: 389–401. doi: 10.1038/mp.2011.165.
  14. Medical comorbidities in аutism spectrum disorders. nationalautismassociation.org/pdf/MedicalComorbiditiesinASD2013.pdf (access date: 01.06.2019).
  15. Maljaars J., Noens I., Scholte E, van Berckelaer-Onnes I. Evaluation of the criterion and convergent validity of the Diagnostic Interview for Social and Communication Disorders in young and low-functioning children. Autism. 2012; 16 (5): 487–497. doi: 10.1177/­1362361311402857.
  16. Tsuji S., Yuhi T., Furuhara K. et al. Salivary oxytocin concentrations in seven boys with autism spectrum disorder received massage from their mothers: a pilot study. Front. Psychiatry. 2015; (6): 58. doi: 10.3389/fpsyt.2015.00058.
  17. Van der Meer J.M.J., Lappenschaar M.G.A., Hartman C.A. et al. Homogeneous combinations of ASD-ADHD traits and their cognitive and behavioral correlates in a popu­lation-based sample. J. Atten. Disord. 2017; 21 (9): 753–763. doi: 10.1177/1087054714533194.
  18. Herbert M.R., Sage C. Autism and EMF? Plausibi­lity of a pathophysiological link. Part I. Pathophysiology. 2013; 3: 191–209. doi: 10.1016/j.pathophys.2013.08.001.
  19. Poletaev A.B., Shenderov B.A. Autism: genetics or epigenetics? ARC J. Immun. Vaccines. 2016; 1 (2): 1–7.
  20. Poletaev A.B. About drunk and lost keys. Klinicheskaya patofiziologiya. 2017; (3): 3–13. (In Russ.)
  21. Simeng L., Enyao L., Zhenyu S. et al. Altered gut microbiota and shortchain fatty acids in Chinese children with autism spectrum disorder. Sci. Reports. 2019; 9: 287. doi: 10.1038/s41598-018-36430-z.
  22. Buie T., Campbell D.B., Fuchs G.J. et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010; 125 (Suppl. 1): 1–18. doi: 10.1542/peds.2009-1878C.
  23. Holingue C., Newill C., Lee L. et al. Gastrointestinal symptoms in autism spectrum disorder: a review of the literature on ascertainment and prevalence. Autism Res. 2018; 11: 24–36. doi: 10.1002/aur.1854.
  24. Campbell D.J., Chang J., Chawarska K. Early gene­ralized overgrowth in autism spectrum disorder: prevalence rates, gender effects, and clinical outcomes. J. Am. Acad. Child Adolesc. Psychiatry. 2014; 53 (10): 1063–1073.e5. doi: 10.1016/j.jaac.2014.07.008.
  25. Coury D.L., Ashwood P., Fasano A. et al. Gastrointestinal conditions in children with autism spectrum di­sorder: developing a research agenda. Pediatrics. 2012; 130 (2): 160–168. doi: 10.1542/peds.2012-0900N.
  26. Parracho H.M., Bingham M.O., Gibson G.R., ­McCartney A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005; 54 (Pt. 10): ­987–991. doi: 10.1099/jmm.0.46101-0.
  27. McElhanon B.O., McCracken C., Karpen S., Sharp W.G. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014; 133 (5): ­872–883. doi: 10.1542/peds.2013-3995.
  28. Buie T., Fuchs G.J., Furuta G.T. et al. Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDs. Pediatrics. 2010; 125 (Suppl. 1): 19–29. doi: 10.1542/peds.2009-1878D.
  29. Shenderov B.A. Functional nutrition and its role in the prevention of metabolic syndrome. M.: DeLiprint. 2008; 319 р. (In Russ.)
  30. Heijtz R.D., Wang S., Anuar F. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA. 2011; 108 (7): 3047–3052. doi: 10.1073/pnas.1010529108.
  31. Ogbonnaya E.S., Clarke G., Shanahan F. et al. Adult hippocampal neurogenesis is regulated by themicro­biome. Biol. Psychiatry. 2015; 78 (4): 7–9. doi: 10.1016/j.biopsych.2014.12.023.
  32. Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017; 20 (2): 145–155. doi: 10.1038/nn.4476.
  33. Brookes S.J.H., Spencer N.J., Costa M., Zagorodnyuk V.P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 2013; 10 (5): 286–296. doi: 10.1038/nrgastro.2013.29.
  34. Li Q., Han Y., Dy A.B.C., Hagerman R.J. The gut microbiota and autism spectrum disorders. Front. Cell. Neurosci. 2017; 11: 120. doi: 10.3389/fncel.2017.00120.
  35. Coury D.L., Ashwood P., Fasano A. et al. Gastrointestinal conditions in children with autism spectrum di­sorder: developing a research agenda. Pediatrics. 2012; 130 (Suppl. 2): 160–168. doi: 10.1542/peds.2012-0900N.
  36. Asano Y., Hiramoto T., Nishino R. et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 303 (11): G1288–G1295. doi: 10.1152/ajpgi.00341.2012.
  37. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018; 1693 (Pt. B): 128–133. doi: 10.1016/j.brainres.2018.03.015.
  38. De Palma G., Lynch M.D., Lu J. et al. Transplantation of fecal microbiota from patients with irritable bo­wel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med. 2017; 9 (379).pii: eaaf6397. doi: 10.1126/scitranslmed.aaf6397.
  39. Kelly J.R., Borre Y., O’Brien C. et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioral changes in the rat. J. Psychiatr. Res. 2016; 82: 109–118. doi: 10.1016/j.jpsychires.2016.07.019.
  40. Ge X., Zhao W., Ding C. et al. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci. Reports. 2017; 7: 441. doi: 10.1038/s41598-017-00612-y.
  41. Luczynski P., Tramullas M., Viola M. et al. Microbiota regulates visceral pain in the mouse. Elife. 2017; 6. pii: e25887. doi: 10.7554/eLife.25887.001.
  42. Porges S.W. Cardiac vagal tone: a physiological index of stress. Neurosci. Biobehav. Rev. 1995; 19: 225–233. doi: 10.1016/0149-7634(94)00066-A.
  43. Mazefsky C.A., Schreiber D.R., Olino T.M., Minshew N.J. The association between emotional and behavio­ral problems and gastrointestinal symptoms among children with high-functioning autism. Autism. 2014; 18 (5): 493–501. doi: 10.1177/1362361313485164.
  44. Peeters B., Noens I., Philips E.M. et al. Autism spectrum disorders in children with functional defecation disorders. J. Pediatr. 2013; 163 (3): 873–878. doi: 10.1016/j.jpeds.2013.02.028.
  45. Bal E., Harden E., Lamb D. et al. Emotion recognition in children with autism spectrum disorders: relations to eye gaze and autonomic state. J. Autism Dev. Disord. 2010; 40: 358–370. doi: 10.1007/s10803-009-0884-3.
  46. Ming X., Julu P.O., Brimacombe M. et al. Reduced cardiac parasympathetic activity in children with autism. Brain Dev. 2005; 27: 509–516. doi: 10.1016/j.braindev.2005.01.003.
  47. Van Hecke A.V., Lebow J., Bal E. et al. Electroencephalogram and heart rate regulation to familiar and unfamiliar people in children with autism spectrum disorders. Child Dev. 2009; 80: 1118–1133. doi: 10.1111/j.1467-8624.2009.01320.x.
  48. Hirstein W., Iversen P., Ramachandran V.S. Autonomic responses of autistic children to people and objects. Proc. Biol. Sci. R. Soc. 2001; (268): 1883–1888. doi: 10.1098/rspb.2001.1724.
  49. Rash J.A., Aguirre-Camacho A. Attention-deficit hyperactivity disorder and cardiac vagal control: a syste­matic review. Attent. Deficit Hyperact. Disord. 2012; (4): 167–177. doi: 10.1007/s12402-012-0087-1.
  50. Marshall P.J., Fox N.A. The development of social engagement: Neurobiological perspectives. New York: Oxford University Press. 2006; 440.
  51. Porges S.W. The vagus: A mediator of behavioral and visceral features associated with autism. The Neurobiology of Autism. Baltimore, MD: John Hopkins University Press. 2004; 65–78.
  52. Di Palma S., Tonacci A., Narzisi A. et al. Moni­toring of autonomic response to sociocognitive tasks during treatment in children with autism spectrum disorders by wearable technologies: A feasibility study. Comput. Biol. Med. 2016; 85: 143–152. doi: 10.1016/j.compbiomed.2016.04.001.
  53. Panju S., Brian J., Dupuis A. et al. Atypical sympathetic arousal in children with autism spectrum disorder and its association with anxiety symptomatology. Mol. Autism. 2015; 6: 64. doi: 10.1186/s13229-015-0057-5.
  54. Savanovich I.I., Tretyak I.G. Impaired gluten and casein tolerance in children with autism spectrum disorders. Li­terature review. Psykhiatriya, psykhoterapiya, klinicheskaya psykhologiya. 2015; (1): 1–9. (In Russ.)
  55. Shattock P., Hooper M., Waring R. Opioid peptides and dipeptidyl peptidase in autism. Dev. Med. Child. Neurol. 2004; (46): 357. doi: 10.1111/j.1469-8749.2004.tb00498.x.
  56. D'eufemia R., Celli M., Finocchiaro R. et al. Abnormal intestinal permeability in children with autism. Acta. Paediatr. 1996; 85: 1076–1079. doi: 10.1111/j.1651-2227.1996.tb14220.x.
  57. Buie T. The relationship of autism and gluten. Clin. Ther. 2013; 35 (5): 578–583. doi: 10.1016/j.clinthera.2013.04.011.
  58. Krakowiak P., Goines P.E., Tancredi D.J. et al. Neonatal cytokine profiles associated with autism spectrum disorder. Biol. Psychiatry. 2017; 81 (5): 442–451. doi: 10.1016/j.biopsych.2015.08.007.
  59. Masi A., Quintana D.S., Glozier N. et al. Cytokine aberrations in autism spectrum disorder: a systema­tic review and meta-analysis. Mol. Psychiatry. 2015; 20 (4): 440–446. doi: 10.1038/mp.2014.59.
  60. Moynihan J.A., Santiago F.M. Brain behavior and immunity: twenty years of T cells. Brain Behav. Immun. 2007; 21 (7): 872–880. doi: 10.1016/j.bbi.2007.06.010.
  61. Chen M.-H., Su T.-P., Chen Y.-S. et al. Comorbidity of allergic and autoimmune diseases in patients with autism spectrum disorder: a nationwide population-based study. Res. Autism Spectr. Disord. 20113; 7 (2): 205–212. doi: 10.1016/j.rasd.2012.08.008.
  62. Miyazaki C., Koyama M., Ota E. et al. Allergies in children with autism spectrum disorder: a systematic review and meta-analysis. Rev. J. Autism Develop. Disord. 2015; 2 (4): 374–401. doi: 10.1007/s40489-015-0059-4.
  63. Schneider T., Przewlocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology. 2005; 30: 80–89. doi: 10.1038/sj.npp.1300518.

Views

Abstract - 58

PDF (Russian) - 42

Cited-By


PlumX


© 2019 Ivanova D.V., Semina I.I., Ziganshin A.U.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Свидетельство о регистрации СМИ ЭЛ № ФС 77-75008 от 1 февраля 2019 года выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies