Oxidative protein modification of the temporal bone tissue in chronic otitis media

Cover Page


Aim. To study the role of oxidative protein modification of bone tissue proteins in the formation of destruction of temporal bone structures in chronic otitis media.

Methods. The study included 139 patients aged 16-75 years with a verified diagnosis of chronic otitis media, who are candidates for surgical treatment. Depending on the method of surgical treatment, patients are divided into four groups (by nosology and complications and reoperations): patients with tubotympanic otitis media and epitympanic antral otitis, without complications and with local or intracranial complications, after reconstructive sanitizing ear surgery. The state of the processes of oxidative modification of proteins was evaluated in the bone tissue of the middle ear cavities, obtained intraoperatively, by the content of carbonyl products with the use of spectrophotometry. The data were processed by descriptive statistics and were presented in the form of a median and a range between quartiles with an estimate of the reliability of the intergroup differences by the Mann-Whitney U-criterion.

Results. A comparison of the indicators characterizing the oxidative modification of bone tissue proteins of the temporal bone in patients with complicated and recurrent forms of chronic otitis media demonstrates a greater degree of free radical destruction of proteins, primarily markers of early stages of protein damage and an increase of aldehyde products, both at the basal level and in response to induction in a complicated course of the disease.

Conclusion. The obtained data allow drawing a conclusion about a high level of oxidative stress in bone tissue in destructive forms of chronic otitis media accompanied by relapses and complications, and about the perspectives of antioxidant pre-operative use taking into account the features of oxidative stress in bone tissue in patients with chronic otitis media.

I D Dubinets

South Ural State Medical University

Author for correspondence.
Email: 89124728166@mail.ru
Chelyabinsk, Russia

A I Sinitsky

South Ural State Medical University

Email: 89124728166@mail.ru
Chelyabinsk, Russia

M Yu Korkmazov

South Ural State Medical University

Email: 89124728166@mail.ru
Chelyabinsk, Russia

E I Chernykh

South Ural State Medical University

Email: 89124728166@mail.ru
Chelyabinsk, Russia

S Yu Kukhtik

South Ural State Medical University

Email: 89124728166@mail.ru
Chelyabinsk, Russia

  1. Daykhes N.A., Yanov Yu.K. Khronicheskiy gnoynyy sredniy otit. Klinicheskie rekomendatsii. (­Chronic suppurative otitis media. Clinical practice guidelines.) M. 2016; 32 p. http://glav-otolar.ru/assets/images/docs/clinical-recomendations/KR320%20HGSO.pdf (access date: 19.01.2017). (In Russ.)
  2. Yeh С.F., Wu C.S., Huang C.Y. et al. Chronic otitis media surgery and re-operation risk factor analysis: A nationwide retrospective cohort study of 18 895 patients. Acta Oto-Laryngologica. 2016; 136 (3): 259–265. doi: 10.3109/00016489.2015.1115550.
  3. Kryukov A.I., Garov E.V. The classification of operations in chronic suppurative otitis media. Rossiiskaya otorinolaringologiya. 2016; (3): 181–182. (In Russ.)
  4. Patyakina O.K., Kryukov A.I., Garov E.V. The classification of chronic suppurative otitis media. Rossiiskaya otorinolaringologiya. 2016; (3): 207–208. (In Russ.)
  5. Dubinets I.D., Korkmazov M.Yu., Tyukhay M.V. The role of structural changes in bone tissue in the performance of va­rious types of reconstructive and sanitizing interventions in chronic inflammation of ENT organs. Vestnik otorinolaringologii. 2016; (S5): 15–16. (In Russ.)
  6. Sinha A.K., Kumar A., Raushan E.A., Kumar G. Bone resorption in chronic otitis media. Intern. J. Sci. Study. 2014; 2: 82–85.
  7. Ralston S.H. Bone structure and metabolism. Medicine. 2017; 45 (9): 560–564. doi: 10.1016/j.mpmed.2017.06.008.
  8. Kamilov F.Kh., Farshatova E.R., Enikeev D.A. Cellular-molecular mechanisms of bone tissue remodeling and its regulation. Fundamental’nye issledovaniya. 2014; 4 (7): 36–842. (In Russ.)
  9. Wang J., Chen B., Xu M. et al. Etiological factors associated with chronic suppurative otitis media in a population of Han adults in China. Acta Oto-Laryngologica. 2016; 136 (10): 1024–1028. doi: 10.1080/00016489.2016.1183818.
  10. Schimdt M., Grünsfelder P., Hoppe F. Induction of matrix metalloproteinases in keratinocytes by cholesteatoma debris and granulation issue extracts. Eur. Arch. Otorhinolaryngol. 2000; 257: 425–429. doi: 10.1007/s004050000249.
  11. Young M.F., Kerr J.M., Ibaraki K. et al. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin. Orthop. Relat. Res. 1992; 281: 275–294. doi: 10.1097/00003086-199208000-00042.
  12. Dubinets I.D., Tyukhay M.V., Sychugov G.V., Uchaev D.A. Structural changes in bone tissue in chronic purulent otitis media studied by light microscopy. Vestnik otorinolaringologii. 2017; (S5): 65–66. (In Russ.)
  13. Dubinets I.D., Korkmazov M.Yu., Korkmazov А.M. et al. Comparative analysis of the nature and dynamics of the surgical treatment of patients with chronic otitis media according to the ENT department of Chelyabinsk. Vestnik otorinolaringologii. 2017; 82 (S5): 64–65. (In Russ.)
  14. Fomina M.A., Abalenikhina Yu.V. Sposob kompleksnoy otsenki soderzhaniya produktov okislitel’noy modifikatsii belkov v tkanyakh i biologicheskikh zhidkostyakh. Metodicheskie rekomendatsii. (A method of complex assessment of the content of oxidative modification products of proteins in tissues and biological fluids. Methodical recommendation.) Ryazan’: RIO RyazGMU. 2014; 60 p. (In Russ.)
  15. Goldberg A.L. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003; 426: 895–899. doi: 10.1038/nature02263.
  16. Nurgaleev N.V., Farshatova E.R., Agletdinov Eh.F. et al. Metabolism of mandibular bone tissue in case of long-term inflow of copper-zinc pyrite ore elements in the experiment. Meditsinskiy vestnik Bashkortostana. 2012; 7 (5): 78–81. (In Russ.)
  17. Atashi F., Modarressi A., Pepper M.S. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells ­Development. 2015; 24: 1150–1163. doi: 10.1089/scd.
  18. 0484.
  19. Mody N., Parhami F., Sarafian T.A. et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radical Biol. Med. 2001; 31 (4): 509–519. doi: 10.1016/s0891-5849(01)00610-4.
  20. Basu S., Michaelsson K., Olofsson H. et al. Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Communications. 2001; 288: 275–279. doi: 10.1006/bbrc.2001.5747.
  21. Shouhed D., Kha H.T., Richardson J.A. et al. Osteogenic oxysterols inhibit the adverse effects of oxidative stress on osteogenic differentiation of marrow stromal cells. J. Cell. Biochem. 2005; 95: 1276–1283. doi: 10.1002/jcb.20497.


Abstract - 155

PDF (Russian) - 110


© 2019 Dubinets I.D., Sinitsky A.I., Korkmazov M.Y., Chernykh E.I., Kukhtik S.Y.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Свидетельство о регистрации СМИ ЭЛ № ФС 77-75008 от 1 февраля 2019 года выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор)