Monitoring of the state of intramural intestinal vessels in acute mesenteric ischemia with optical coherence angiography

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Background. Objective data on the state of intramural microvessels are needed to select an effective therapy for the intestine reversibly damaged by mesenteric occlusion.

Aim. To monitor the condition of the small intestine blood vessels in acute mesenteric ischemia using the method of optical coherence angiography.

Material and methods. The study was carried out on male rats weighing 215–315 g (n=17) on a model of acute mesenteric ischemia. Monitoring of the microvascular bed was performed using the optical coherence angiography before ischemia modeling and 60, 120, and 180 minutes after the onset of ischemia. The data were evaluated by calculating the total length (L, mm) and area (S, mm2) of vessels on angiograms, as well as the S/L ratio, an index of vessel diameter that provides information about the diameter of vessels regardless of their length, what means it is sensitive to their dilation/spasm. The significance of differences in quantitative characteristics was assessed using the Mann–Whitney and Kruskal–Wallis criteria.

Results. In the devascularized sector, the state of the vascular wall changed in different directions for 180 minutes, as evidenced by statistically significant changes in the parameters L, S and their ratio. During the first hour of ischemia, the median S/L ratio decreased by 9.2%. By the 120th minute of ischemia development, the S/L ratio recovered and did not differ statistically from the initial values (p=0.339). After 180 minutes, there was a trend towards an increase in the diameter of the remaining perfused vessels — the median S/L on angiograms in the devascularized sector exceeded the initial level by 12.9% (p=0.045).

Conclusion. Areas of the small intestine, localized at the border of spread of ischemia, according to the optical coherence angiography, are characterized by multidirectional changes in the total length and area of the intramural vessels; during the first hour of ischemia, functional changes predominate, probably due to an increase in the tonus of the vascular wall; after 180 minutes of observation, signs of irreversible dilatation of microvessels are recorded.

Full Text

Restricted Access

About the authors

Maksim G Ryabkov

Privolzhsky Research Medical University

Author for correspondence.
ORCID iD: 0000-0002-9555-190X

M.D., D. Sci. (Med.), Assoc. Prof., Leading Researcher, University Clinic

Russian Federation, Nizhny Novgorod, Russia

Marina A. Sirotkina

Privolzhsky Research Medical University

ORCID iD: 0000-0002-4665-8292

M.D., Cand. Sci. (Med.), Director, Research Institute of Experimental Oncology and Biome­dical Technologies

Russian Federation, Nizhny Novgorod, Russia

Mikhail S. Baleev

City Clinical Hospital No. 30

ORCID iD: 0000-0001-6943-9757

канд. мед. наук, врач-хирург

Russian Federation, Nizhny Novgorod, Russia

Mikhail A. Sizov

City Clinical Hospital No. 30

ORCID iD: 0000-0001-9661-133X
SPIN-code: 1874-2076

M.D., surgeon

Russian Federation, Nizhny Novgorod, Russia

Grigory V. Gelikonov

Federal Research Center of the Institute of Applied Physics of the Russian Academy of Sciences

ORCID iD: 0000-0002-0798-4570

D. Sci. (Phys.-Math.), Head, Laboratory of Highly Sensitive Optical Measurements

Russian Federation, Nizhny Novgorod, Russia

Alexander A. Moiseev

Federal Research Center of the Institute of Applied Physics of the Russian Academy of Sciences

ORCID iD: 0000-0003-0093-0358

Cand. Sci. (Phys.-Math.), Senior Researcher, Laboratory of Highly Sensitive Optical Measurements

Russian Federation, Nizhny Novgorod, Russia

Natalya D. Gladkova

Privolzhsky Research Medical University

ORCID iD: 0000-0002-8386-7157

M.D., D. Sci. (Med.), Prof., Head, laboratory of optical coherence tomography of the Research Institute of Experimental Oncology and Biomedical Technologies

Russian Federation, Nizhny Novgorod, Russia

Elena B. Kiseleva

Privolzhsky Research Medical University

ORCID iD: 0000-0003-4769-417X

Cand. Sci. (Biol.), Senior Researcher, Research Institute of Experimental Oncology and Biome­dical Technologies

Russian Federation, Nizhny Novgorod, Russia


  1. Bala M, Kashuk J, Moore EE, Kluger Y, Biffl W, Gomes CA, Ben-Ishay O, Rubinstein C, Balogh Z, Civil I, Coccolini F, Leppaniemi A, Peitzman A, Ansaloni L, Sugrue M, Sartelli M, Saverio S, Fraga G, Catena F. Acute mesenteric ischemia: guidelines of the World Society of Emergency Surgery. World J Emerg Surg. 2017;12:38. doi: 10.1186/s13017-017-0150-5.
  2. Ostrye sosudistye bolezni kishechnika u vzroslykh. Klinicheskie rekomendatsii. (Acute vascular bowel disease in adults. Сlinical guidelines.) M.; 2018. http://obshchestvo-khirurgov.rf/stranica-pravlenija/klinicheskierekomendaci/ostraja-mezenterialnaja-ishemija-nkr.html (access date: 15.01.2022). (In Russ.)
  3. Ryabkov MG, Kiseleva EB, Gladkova ND, Baleev MS, Bederina EL, Lukoyanychev EE, Miro­nov AA, Dezortsev IL, Beschastnov VV. The role of intramural bloodstream dysfunction in the development of small intestine ische­mic necrosis. Novosti Khirurgii. 2018;26(2):135–145. (In Russ.) doi: 10.18484/2305-0047.2018.2.135.
  4. Lim S, Halandras PM, Bechara C, Aulivola B, Crisostomo P. Contemporary management of acute mesenteric ischemia in the endovascular era. Vasc Endovascular Surg. 2019;53(1):42–50. doi: 10.1177/1538574418805228.
  5. Kojima S, Sakamoto T, Nagai Y, Matsui Y, Nambu K, Masamune K. Laser speckle contrast imaging for intraope­rative quantitative assessment of intestinal blood perfusion during colorectal surgery: A prospective pilot study. Surg Innov. 2019;26(3):293–301. doi: 10.1177/1553350618823426.
  6. De Bruin AF, Kornmann VN, van der Sloot K. Sidestream dark field imaging of the serosal microcirculation during gastrointestinal surgery. Colorectal Dis. 2016;18(3):O103–O110. doi: 10.1111/codi.13250.
  7. Jansen SM, de Bruin DM, van Berge Henegouwen MI, Strackee SD, Veelo DP, van Leeuwen TG, Gisbertz SS. Optical techniques for perfusion monitoring of the gastric tube after esophagectomy: a review of technologies and thresholds. Dis Esophagus. 2018;31(6). doi: 10.1093/dote/dox161.
  8. Gelikonov VM, Romashov VN, Shabanov DV, Ksenofontov SYu, Terpelov DA, Shilyagin PA, Gelikonov GV, Vitkin IA. Cross-polarization optical coherence tomography with active maintenance of the circular polarization of a sounding wave in a common path system. Radiophys Quant El. 2018;60(11):897–911. doi: 10.1007/s11141-018-9856-9.
  9. Kiseleva EB, Ryabkov MG, Baleev MS, Bederina EL, Shilyagin PA, Moiseev AA, Beschastnov VV, Romanov IN, Gelikonov GV, Gladkova ND. Prospects of intraoperative multimodal OCT application in patients with acute mesenteric ischemia. Diagnostics. 2021;11(4):705. doi: 10.3390/diagnostics11040705.
  10. Chu Z, Lin J, Gao C. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J Biomed Opt. 2016;21:66008. doi: 10.1117/1.JBO.21.6.066008.
  11. Moiseev A, Ksenofontov S, Gorozhantseva M, Shakhova N, Sirotkina M, Kiseleva E, Matveev L, Zay­tsev V, Zagaynova E, Gelikonov V, Gladkova N, Vitkin A, Gelikonov G. Real time OCT-based angiography device with hand-held probe for everyday clinical use. J Biophotonics. 2018;11:201–217. doi: 10.1002/jbio.201700292.
  12. Wang-Evers M, Casper MJ, Glahn J. Assessing the impact of aging and blood pressure on dermal microvasculature by reactive hyperemia optical coherence tomography angiography. Sci Rep. 2021;11(1):13411. doi: 10.1038/s41598-021-92712-z.
  13. Meilahn JE, Morris JB, Ceppa EP, Bulkley GB. Effect of prolonged selective intramesenteric arterial vasodilator therapy on intestinal viability after acute segmental mesenteric vascular occlusion. Ann Surg. 2001;234(1):107–115. doi: 10.1097/00000658-200107000-00016.
  14. Eker A, Malzac B, Teboul J, Jourdan J. Mesente­ric ischemia after coronary artery bypass grafting: should local continuous intra-arterial perfusion with papave­rine be regarded as a treatment? Eur J Cardiothorac Surg. 1999;15(2):218–220. doi: 10.1016/s1010-7940(98)00260-7.
  15. Winzer R, Fedders D, Backes M, Ittermann T, Gründling M, Mensel B, Held HC, Kromrey ML, Weitz J, Hoffmann RT, Bülow R, Kühn JP. Correction to: local intra-arterial vasodilator infusion in non-occlusive mesenteric ischemia significantly increases survival rate. Cardiovasc Intervent Radiol. 2021;44(10):1687. doi: 10.1007/s00270-021-02900-7.
  16. Jin C, Kim MH, Kang EJ. Assessing vessel tone during coronary artery spasm by dual-acquisition multidetector computed tomography angiography. Cardiology. 2018;139(1):25–32. doi: 10.1159/000478926.

Supplementary files

Supplementary Files
1. Рис. 1. Исследование ишемизированной кишки с помощью оптической когерентной томографии в режиме ангиографии (ОКА): а — схема экспериментальной модели; б — макрофото тонкой кишки после моделирования острой мезентериальной ишемии, артерии кишки в секторе «De-vb» перевязаны, пересечены, брыжейка между секторами «De-vb» и «Vb» рассечена с сохранением краевой аркады; в — получение ОКА-данных с кишечной стенки; 1 — перевязанные и пересечённые артерии брыжейки; 2 — рассечённая брыжейка между секторами «De-vb» и «Vb»; 3 — точка исследования ОКА в секторе «Vb», 4 — точка исследования ОКА в секторе «De-vb», 5 — ОКА-зонд; ВМА — верхняя (краниальная) мезентериальная артерия; ВМВ — верхняя (краниальная) мезентериальная вена

Download (82KB)
2. Рис. 2. Ангиограмма ишемизированной кишки, этапы вычисления количественных параметров: а — оптическая когерентная ангиограмма (1 — интрамуральные сосуды); б — «скелетизированное» изображение сосудов для вычисления их суммарной длины L (2 — центральные линии интрамуральных сосудов); в — изображение в формате 8 бит для вычисления площади S, занимаемой сосудами на ангиограмме (3 — площадь, занимаемая сосудами)

Download (88KB)
3. Рис. 3. Изменения индекса диаметра сосудов VDI (отношения общей площади S к общей длине сосудов L) в перфузируемых интрамуральных микрососудах васкуляризированного (а) и деваскуляризированного (б) секторов тонкой кишки

Download (33KB)
4. Рис. 4. Изменения микрососудистой сети и гистологической структуры кишки на фоне острой мезентериальной ишемии. В васкуляризированном секторе «Vb» (a–г) признаков ишемической деструкции нет; в деваскуляризированном секторе «De-bv» (д–з) ОКА- и гистологическая картина ишемического некроза слизистой оболочки с выраженными дисциркуляторными нарушениями. На гистологических препаратах: с — серозная оболочка; м — мышечный слой кишечной стенки; п/с — подслизистый слой; сл — слизистая оболочка. В просвете субсерозных «толстых» (1) и подслизистых «тонких» (2) сосудов эритроциты, сладж без признаков тромбирования. Бар 100 мкм. ОКА — оптическая когерентная томография в режиме ангиографии

Download (222KB)

© 2022 Eco-Vector

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies