Application of the non-incremental approach to axisymmetric fem analysis of large strain in tensor-based matrix form

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the tensor-matrix FEM system of equations describing the final state of large deformations of an incompressible elastic body, a development to solve axisymmetric problems is obtained. Also, analytical expressions for the components of the partial derivatives matrix of the system are obtained. Examples of calculating the everted state of a circular cylinder, as well as analysis of sealing rings are described.

Full Text

Restricted Access

About the authors

Vladimir V. Chekhov

V.I. Vernadsky Crimean Federal University

Author for correspondence.
Email: chekhovvv@cfuv.ru
Russian Federation, Simferopol

References

  1. De Souza Neto E.A., Feng Y.T. On the determination of the path direction for arc-length methods in the presence of bifurcations and ‘snap-backs’ // Comput. Methods Appl. Mech. Engrg. 1999. 179 (1-2). P. 81–89. https://doi.org/10.1016/S0045-7825(99)00042-0
  2. Arciniega R.A., Reddy J.N. Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures // Computer Methods in Applied Mechanics and Engineering. 196 (4-6). 2007. P. 1048–1073. https://doi.org/10.1016/j.cma.2006.08.014
  3. Golovanov A.I., Konoplev Yu.G., Sultanov L.U. Numerical Investigation of Large Deformations of Hyperelastic Solids. III. Statements of Problem and Solution Algorithms // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2009. 151 (3). P. 108–120. (in Russian)
  4. Bauer S., Schäfer M., Grammenoudis P., Tsakmakis Ch. Three-dimensional finite elements for large deformation micropolar elasticity // Comput. Methods Appl. Mech. Engrg. 2010. 199 (41-44). P. 2643–2654. https://doi.org/10.1016/j.cma.2010.05.002
  5. Rogovoi A.A., Stolbova O.S. A stress recovery procedure for solving geometrically non-linear problems in the mechanics of a deformable solid by the finite element method // J. Appl. Math. Mech. 2010. 74 (6). P. 710–720.
  6. Huu-Tai Thai, Seung-Eock Kim. Nonlinear static and dynamic analysis of cable structures // Finite Elements in Analysis and Design. 2011. 47 (3). P. 237–246. https://doi.org/10.1016/j.finel.2010.10.005
  7. Cavalieri F.J., Cardona A. An augmented Lagrangian technique combined with a mortar algorithm for modelling mechanical contact problems // Int. J. Numer. Meth. Engng. 2013. 93 (4). P. 420–442. https://doi.org/10.1002/nme.4391
  8. Galanin M.P., Krylov M.K., Lototskii A.P., Rodin A.S. Large Plastic Strains in the Problem of High-Speed Loading of an Aluminum Ribbon // Mech. Solids. 2017. 52 (2). P. 172–183. https://doi.org/10.3103/S0025654417020078
  9. Kan Z., Peng H., Chen B. Complementarity Framework for Nonlinear Analysis of Tensegrity Structures with Slack Cables // AIAA Journal. 2018. 56 (12). P. 5013–5027. https://doi.org/10.2514/1.J057149
  10. Nedjar B., Baaser H., Martin R., Neff P. A finite element implementation of the isotropic exponentiated Hencky-logarithmic model and simulation of the eversion of elastic tubes // Computational Mechanics. 2018. 62. P. 635–654. doi: 10.1007/s00466-017-1518-9
  11. Rabelo J.M.G., Becho J.S., Greco M., Cimini C.A.J. Modeling the creep behavior of GRFP truss structures with Positional Finite Element Method // Latin American Journal of Solids and Structures. 2018. 15 (2): e17. https://doi.org/10.1590/1679-78254432
  12. Fakhrutdinov L.R., Abdrakhmanova A.I., Garifullin I.R., Sultanov L.U. Numerical investigation of large strains of incompressible solids // J. Phys.: Conf. Ser. 2019. 1158 (2). 022041. https://doi.org/10.1088/1742-6596/1158/2/022041
  13. Sultanov L.U. Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction // Lobachevskii J Math. 2021. 42. P. 2056–2063. https://doi.org/10.1134/S199508022108031X
  14. Liu Zh., McBride A., Ghosh A., Heltai L., Huang W., Yu T., Steinmann P., Saxena P. Computational instability analysis of inflated hyperelastic thin shells using subdivision surfaces // Comput. Mech. 2024. 73. P. 257–276. https://doi.org/10.1007/s00466-023-02366-z
  15. Taubin A.G., Rumiantsev K.A., Komendantov A.V. Specifics of deformation of articles from highly elastic matematerials with inner cavities // Transactions of the Krylov State Research Centre. 2020. 1(S-I). P. 108–114. (in Russian) https://doi.org/10.24937/2542-2324-2020-1-S-I-108-114.
  16. Bich Quyen, Ngoc Tien. Penalty function method for geometrically nonlinear buckling analysis of imperfect truss with multi-freedom constraints based on mixed FEM. // E3S Web of Conferences. 2023. 410. https://doi.org/10.1051/e3sconf/202341003028
  17. Sagdatullin M.K. Numerical modeling of nonlinear deformation processes for shells of medium thickness // Structural Mechanics of Engineering Constructions and Buildings. 2023. Vol. 19, No 2. P. 130–148. (in Russian) https://doi.org/10.22363/1815-5235-2023-19-2-130-148
  18. De Borst R., Crisfield M., Remmers J., Verhoosel C. Non-Linear Finite Element Analysis of Solids and Structures: Second Edition. John Wiley & Sons Ltd, 2012. 516 pp. https://doi.org/10.1002/9781118375938
  19. Ladevèze P. Nonlinear Computational Structural Mechanics – New Approaches and Non-Incremental Methods of Calculation. NY: Springer-Verlag, 1999. 220 pp. https://doi.org/10.1007/978-1-4612-1432-8
  20. Gotsulyak E.A., Luk’yanchenko O.K., Kostina E.V., Garan I.G. Geometrically nonlinear finite-element models for thin shells with geometric imperfections // Int. Appl. Mech. 2011. 47. P. 302–312. https://doi.org/10.1007/s10778-011-0461-2
  21. Tolle K., Marheineke N. Extended group finite element method // Applied Numerical Mathematics, 2021. 162, P. 1–19. https://doi.org/10.1016/j.apnum.2020.12.008
  22. Korelc J. Semi-analytical solution of path-independent nonlinear finite element models // Finite Elements in Analysis and Design. 2011. 47 (3). P. 281–287. https://doi.org/10.1016/j.finel.2010.10.006
  23. Chekhov V.V. Matrix FEM equation describing the large-strain deformation of an incompressible material // Int. Appl. Mech. 2011. 46. P. 1147–1153. https://doi.org/10.1007/s10778-011-0407-8
  24. Chekhov V.V. Modification of the finite-element method to apply to problems of the equilibrium of bodies subject to large deformations // Int. Appl. Mech. 2013. 49. P. 658–664. https://doi.org/10.1007/s10778-013-0599-1
  25. Boy Vasconcellos D, Greco M. Logarithmic strain tensor in the positional formulation of FEM // XLIV Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE 2023).
  26. Shapiro A.A. Finite strain problems in ANSYS and LS-DYNA. Applied numerical methods verification // Network journal «Oil and Gas Business». 2004. 1. P. 20. (in Russian) URL: https://ogbus.ru/article/view/zadachi-s-konechnymi-deformaciyami-v-paketax-ansys-i-ls-dyna-v/23357 (accessed on 20 August 2024)
  27. Getman I.P., Karyakin M.I., Ustinov Yu.A. Analysis of the non-linear behaviour of circular membranes with an arbitrary radial profile // J. Appl. Math. Mech. 2010. 74 (6). P. 654-662.
  28. Scherbakova A.O. The finite element method use for large displacements calculations of plane linear-elastic structures // Vestnik YuUrGU. Serija «Matematika. Mehanika. Fizika». 2011. № 32 (249), Issue 5. P. 83–91. (in Russian) URL: https://vestnik.susu.ru/mmph/issue/viewIssue/47/23 (accessed on 20 August 2024)
  29. Azikri H.P., Ávila C.R., Belo I.M., Beck A.T. The Tikhonov regularization method in elastoplasticity // Applied Mathematical Modelling. 2012. 36 (10). P. 4687–4707. https://doi.org/10.1016/j.apm.2011.11.086
  30. Léger S., Fortin A., Tibirna C., Fortin M. An updated Lagrangian method with error estimation and adaptive remeshing for very large deformation elasticity problems // Int. J. Numer. Meth. Engng. 2014. 100 (13). P. 1006–1030. https://doi.org/10.1002/nme.4786
  31. Léger S., Haché J., Traoré S. Improved algorithm for the detection of bifurcation points in nonlinear finite element problems // Computers & Structures. 2017. 191. P. 1–11. https://doi.org/10.1016/j.compstruc.2017.06.002
  32. Bakulin V.N., Kaledin V.O., Kaledin Vl.O., Kuznetsova E.V., Repinsky V.V. Object-oriented realization of finite element method // Matematicheskoe modelirovanie. 2003. 15 (2); P. 77–82. (in Russian)
  33. Kumar S. Object-Oriented Finite Element Analysis of Metal Working Processes // J. Software Engineering & Applications. 2010. 3. P. 572–579. https://doi.org/10.4236/jsea.2010.36066
  34. Kopysov S.P., Kuzmin I.M., Nedozhogin N.S., Novikov A.K., Rychkov V.N., Sagdeeva Y.A., Tonkov L.E. Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio // Computer Research and Modeling, 2014. 6 (1). P. 79–97. (in Russian) https://doi.org/10.20537/2076-7633-2014-6-1-79-97
  35. Kanber B., Yavuz M.M. Object-oriented programming in meshfree analysis of elastostatic problems // International Journal of Engineering & Applied Sciences (IJEAS). 2015. 7 (2). P. 1–18. https://doi.org/10.24107/ijeas.251244
  36. Dobromyslov V.V., Alexandrov A.E., Vostrikov A.A. Development of instrumental tools finite element analysis based on component technology // Innovatsii i investitsii. 2015. 8, P. 135–139. (in Russian)
  37. Eyheramendy D., Saad R., Zhang L. An object-oriented symbolic approach for the automated derivation of Finite Element contributions // Advances in Engineering Software. 2016. 94. P. 1–13. https://doi.org/10.1016/j.advengsoft.2016.01.010
  38. Badia S, Martín AF, Principe J. FEMPAR: An Object-Oriented Parallel Finite Element Framework // Arch Comput Methods Eng. 2018. 25. P. 195–271. https://doi.org/10.1007/s11831-017-9244-1
  39. Chekhov V.V.: Tensor-based matrices in geometrically non-linear FEM // Int. J. Numer. Meth. Engng. 2005. 63 (15). P. 2086–2101. https://doi.org/10.1002/nme.1343
  40. Nikabadze M.U. Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics // J. Math. Sci. (N.Y.) 2020. 250. P. 895–931. https://doi.org/10.1007/s10958-020-05053-z
  41. Lurie A.I. Non-Linear Theory of Elasticity. North-Holland: Amsterdam, 1990. 618 pp.
  42. GSL Reference Manual. URL: https://www.gnu.org/software/gsl/doc/latex/gsl-ref.pdf (accessed on 20 August 2024)
  43. Lurie A.I. Differentiation with Respect to Tensor Argument.// Problems of Mathematical Physics. Nauka: Leningrad, 1976. P. 48–57. (in Russian)
  44. Dimitrienko Yu.I. Tensor Analysis and Nonlinear Tensor Functions. — Springer Dordrecht, 2002. 662 pp. https://doi.org/10.1007/978-94-017-3221-5
  45. Rogovoy A.A. A Formalized Approach to the Construction of Models of Deformable Solid Mechanics. Part I. Basic Relations of Continuum Mechanics. — Perm, Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2020. 288 pp. (in Russian) URL: https://www.elibrary.ru/item.asp?id=44190094 (accessed on 20 August 2024)
  46. Fedorenko R.P. Introduction to Computational Physics — MFTI, Moscow, 1994. 528 pp. (in Russian)
  47. Bo Yang, Salant R.F. Numerical analysis compares the lubrication of U seal and step seal // Sealing Technology. 2009. 2009 (3). P. 7–11. https://doi.org/10.1016/S1350-4789(09)70132-1
  48. Belforte G., Conte M., Manuello Bertetto A., Mazza L., Visconte C. Experimental and numerical evaluation of contact pressure in pneumatic seals // Tribology International. 2009. 42 (1). P. 169–175. https://doi.org/10.1016/j.triboint.2008.04.010
  49. Avrushchenko B.Kh. Rubber Seals. Khimiya, Leningrad, 1978. 136 pp. (in Russian)
  50. Bathe K.-J. Finite element procedures. Prentice Hall, 1996. 1037 pp.
  51. ELCUT A New Approach to Field Modeling. (in Russian) URL: https://elcut.ru (accessed on 20 August 2024)
  52. KD piston seal with asymmetric lips. URL: https://astonseals.com/pdf/prodotti/gb/KD.pdf (accessed on 20 August 2024)
  53. Kondakov L.A., Golubev A.I., Ovander V.B., et al. Uplotneniya i uplotnitel’naya tekhnika: spravochnik (Seals and Sealing Machines: Handbook), Eds.: Golubev A.I. and Kondakov L.A. Moscow: Mashinostroenie, 1986. 464 pp. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Computational model with initial approximation form and variants of the deformed state of the circular cylinder eversion problem.

Download (147KB)
3. Fig. 2. Computational model and calculation results of an O-ring of circular cross-section.

Download (180KB)
4. Fig. 3. Computational model and results of calculations of the lip seal ring.

Download (174KB)

Copyright (c) 2024 Russian Academy of Sciences