Application of the non-incremental approach to axisymmetric fem analysis of large strain in tensor-based matrix form
- Authors: Chekhov V.V.1
-
Affiliations:
- V.I. Vernadsky Crimean Federal University
- Issue: No 5 (2024)
- Pages: 164–186
- Section: Articles
- URL: https://kazanmedjournal.ru/1026-3519/article/view/672983
- DOI: https://doi.org/10.31857/S1026351924050106
- EDN: https://elibrary.ru/UAHKHH
- ID: 672983
Cite item
Abstract
For the tensor-matrix FEM system of equations describing the final state of large deformations of an incompressible elastic body, a development to solve axisymmetric problems is obtained. Also, analytical expressions for the components of the partial derivatives matrix of the system are obtained. Examples of calculating the everted state of a circular cylinder, as well as analysis of sealing rings are described.
Full Text

About the authors
Vladimir V. Chekhov
V.I. Vernadsky Crimean Federal University
Author for correspondence.
Email: chekhovvv@cfuv.ru
Russian Federation, Simferopol
References
- De Souza Neto E.A., Feng Y.T. On the determination of the path direction for arc-length methods in the presence of bifurcations and ‘snap-backs’ // Comput. Methods Appl. Mech. Engrg. 1999. 179 (1-2). P. 81–89. https://doi.org/10.1016/S0045-7825(99)00042-0
- Arciniega R.A., Reddy J.N. Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures // Computer Methods in Applied Mechanics and Engineering. 196 (4-6). 2007. P. 1048–1073. https://doi.org/10.1016/j.cma.2006.08.014
- Golovanov A.I., Konoplev Yu.G., Sultanov L.U. Numerical Investigation of Large Deformations of Hyperelastic Solids. III. Statements of Problem and Solution Algorithms // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2009. 151 (3). P. 108–120. (in Russian)
- Bauer S., Schäfer M., Grammenoudis P., Tsakmakis Ch. Three-dimensional finite elements for large deformation micropolar elasticity // Comput. Methods Appl. Mech. Engrg. 2010. 199 (41-44). P. 2643–2654. https://doi.org/10.1016/j.cma.2010.05.002
- Rogovoi A.A., Stolbova O.S. A stress recovery procedure for solving geometrically non-linear problems in the mechanics of a deformable solid by the finite element method // J. Appl. Math. Mech. 2010. 74 (6). P. 710–720.
- Huu-Tai Thai, Seung-Eock Kim. Nonlinear static and dynamic analysis of cable structures // Finite Elements in Analysis and Design. 2011. 47 (3). P. 237–246. https://doi.org/10.1016/j.finel.2010.10.005
- Cavalieri F.J., Cardona A. An augmented Lagrangian technique combined with a mortar algorithm for modelling mechanical contact problems // Int. J. Numer. Meth. Engng. 2013. 93 (4). P. 420–442. https://doi.org/10.1002/nme.4391
- Galanin M.P., Krylov M.K., Lototskii A.P., Rodin A.S. Large Plastic Strains in the Problem of High-Speed Loading of an Aluminum Ribbon // Mech. Solids. 2017. 52 (2). P. 172–183. https://doi.org/10.3103/S0025654417020078
- Kan Z., Peng H., Chen B. Complementarity Framework for Nonlinear Analysis of Tensegrity Structures with Slack Cables // AIAA Journal. 2018. 56 (12). P. 5013–5027. https://doi.org/10.2514/1.J057149
- Nedjar B., Baaser H., Martin R., Neff P. A finite element implementation of the isotropic exponentiated Hencky-logarithmic model and simulation of the eversion of elastic tubes // Computational Mechanics. 2018. 62. P. 635–654. doi: 10.1007/s00466-017-1518-9
- Rabelo J.M.G., Becho J.S., Greco M., Cimini C.A.J. Modeling the creep behavior of GRFP truss structures with Positional Finite Element Method // Latin American Journal of Solids and Structures. 2018. 15 (2): e17. https://doi.org/10.1590/1679-78254432
- Fakhrutdinov L.R., Abdrakhmanova A.I., Garifullin I.R., Sultanov L.U. Numerical investigation of large strains of incompressible solids // J. Phys.: Conf. Ser. 2019. 1158 (2). 022041. https://doi.org/10.1088/1742-6596/1158/2/022041
- Sultanov L.U. Computational Algorithm for Investigation Large Elastoplastic Deformations with Contact Interaction // Lobachevskii J Math. 2021. 42. P. 2056–2063. https://doi.org/10.1134/S199508022108031X
- Liu Zh., McBride A., Ghosh A., Heltai L., Huang W., Yu T., Steinmann P., Saxena P. Computational instability analysis of inflated hyperelastic thin shells using subdivision surfaces // Comput. Mech. 2024. 73. P. 257–276. https://doi.org/10.1007/s00466-023-02366-z
- Taubin A.G., Rumiantsev K.A., Komendantov A.V. Specifics of deformation of articles from highly elastic matematerials with inner cavities // Transactions of the Krylov State Research Centre. 2020. 1(S-I). P. 108–114. (in Russian) https://doi.org/10.24937/2542-2324-2020-1-S-I-108-114.
- Bich Quyen, Ngoc Tien. Penalty function method for geometrically nonlinear buckling analysis of imperfect truss with multi-freedom constraints based on mixed FEM. // E3S Web of Conferences. 2023. 410. https://doi.org/10.1051/e3sconf/202341003028
- Sagdatullin M.K. Numerical modeling of nonlinear deformation processes for shells of medium thickness // Structural Mechanics of Engineering Constructions and Buildings. 2023. Vol. 19, No 2. P. 130–148. (in Russian) https://doi.org/10.22363/1815-5235-2023-19-2-130-148
- De Borst R., Crisfield M., Remmers J., Verhoosel C. Non-Linear Finite Element Analysis of Solids and Structures: Second Edition. John Wiley & Sons Ltd, 2012. 516 pp. https://doi.org/10.1002/9781118375938
- Ladevèze P. Nonlinear Computational Structural Mechanics – New Approaches and Non-Incremental Methods of Calculation. NY: Springer-Verlag, 1999. 220 pp. https://doi.org/10.1007/978-1-4612-1432-8
- Gotsulyak E.A., Luk’yanchenko O.K., Kostina E.V., Garan I.G. Geometrically nonlinear finite-element models for thin shells with geometric imperfections // Int. Appl. Mech. 2011. 47. P. 302–312. https://doi.org/10.1007/s10778-011-0461-2
- Tolle K., Marheineke N. Extended group finite element method // Applied Numerical Mathematics, 2021. 162, P. 1–19. https://doi.org/10.1016/j.apnum.2020.12.008
- Korelc J. Semi-analytical solution of path-independent nonlinear finite element models // Finite Elements in Analysis and Design. 2011. 47 (3). P. 281–287. https://doi.org/10.1016/j.finel.2010.10.006
- Chekhov V.V. Matrix FEM equation describing the large-strain deformation of an incompressible material // Int. Appl. Mech. 2011. 46. P. 1147–1153. https://doi.org/10.1007/s10778-011-0407-8
- Chekhov V.V. Modification of the finite-element method to apply to problems of the equilibrium of bodies subject to large deformations // Int. Appl. Mech. 2013. 49. P. 658–664. https://doi.org/10.1007/s10778-013-0599-1
- Boy Vasconcellos D, Greco M. Logarithmic strain tensor in the positional formulation of FEM // XLIV Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE 2023).
- Shapiro A.A. Finite strain problems in ANSYS and LS-DYNA. Applied numerical methods verification // Network journal «Oil and Gas Business». 2004. 1. P. 20. (in Russian) URL: https://ogbus.ru/article/view/zadachi-s-konechnymi-deformaciyami-v-paketax-ansys-i-ls-dyna-v/23357 (accessed on 20 August 2024)
- Getman I.P., Karyakin M.I., Ustinov Yu.A. Analysis of the non-linear behaviour of circular membranes with an arbitrary radial profile // J. Appl. Math. Mech. 2010. 74 (6). P. 654-662.
- Scherbakova A.O. The finite element method use for large displacements calculations of plane linear-elastic structures // Vestnik YuUrGU. Serija «Matematika. Mehanika. Fizika». 2011. № 32 (249), Issue 5. P. 83–91. (in Russian) URL: https://vestnik.susu.ru/mmph/issue/viewIssue/47/23 (accessed on 20 August 2024)
- Azikri H.P., Ávila C.R., Belo I.M., Beck A.T. The Tikhonov regularization method in elastoplasticity // Applied Mathematical Modelling. 2012. 36 (10). P. 4687–4707. https://doi.org/10.1016/j.apm.2011.11.086
- Léger S., Fortin A., Tibirna C., Fortin M. An updated Lagrangian method with error estimation and adaptive remeshing for very large deformation elasticity problems // Int. J. Numer. Meth. Engng. 2014. 100 (13). P. 1006–1030. https://doi.org/10.1002/nme.4786
- Léger S., Haché J., Traoré S. Improved algorithm for the detection of bifurcation points in nonlinear finite element problems // Computers & Structures. 2017. 191. P. 1–11. https://doi.org/10.1016/j.compstruc.2017.06.002
- Bakulin V.N., Kaledin V.O., Kaledin Vl.O., Kuznetsova E.V., Repinsky V.V. Object-oriented realization of finite element method // Matematicheskoe modelirovanie. 2003. 15 (2); P. 77–82. (in Russian)
- Kumar S. Object-Oriented Finite Element Analysis of Metal Working Processes // J. Software Engineering & Applications. 2010. 3. P. 572–579. https://doi.org/10.4236/jsea.2010.36066
- Kopysov S.P., Kuzmin I.M., Nedozhogin N.S., Novikov A.K., Rychkov V.N., Sagdeeva Y.A., Tonkov L.E. Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio // Computer Research and Modeling, 2014. 6 (1). P. 79–97. (in Russian) https://doi.org/10.20537/2076-7633-2014-6-1-79-97
- Kanber B., Yavuz M.M. Object-oriented programming in meshfree analysis of elastostatic problems // International Journal of Engineering & Applied Sciences (IJEAS). 2015. 7 (2). P. 1–18. https://doi.org/10.24107/ijeas.251244
- Dobromyslov V.V., Alexandrov A.E., Vostrikov A.A. Development of instrumental tools finite element analysis based on component technology // Innovatsii i investitsii. 2015. 8, P. 135–139. (in Russian)
- Eyheramendy D., Saad R., Zhang L. An object-oriented symbolic approach for the automated derivation of Finite Element contributions // Advances in Engineering Software. 2016. 94. P. 1–13. https://doi.org/10.1016/j.advengsoft.2016.01.010
- Badia S, Martín AF, Principe J. FEMPAR: An Object-Oriented Parallel Finite Element Framework // Arch Comput Methods Eng. 2018. 25. P. 195–271. https://doi.org/10.1007/s11831-017-9244-1
- Chekhov V.V.: Tensor-based matrices in geometrically non-linear FEM // Int. J. Numer. Meth. Engng. 2005. 63 (15). P. 2086–2101. https://doi.org/10.1002/nme.1343
- Nikabadze M.U. Eigenvalue Problems for Tensor-Block Matrices and Their Applications to Mechanics // J. Math. Sci. (N.Y.) 2020. 250. P. 895–931. https://doi.org/10.1007/s10958-020-05053-z
- Lurie A.I. Non-Linear Theory of Elasticity. North-Holland: Amsterdam, 1990. 618 pp.
- GSL Reference Manual. URL: https://www.gnu.org/software/gsl/doc/latex/gsl-ref.pdf (accessed on 20 August 2024)
- Lurie A.I. Differentiation with Respect to Tensor Argument.// Problems of Mathematical Physics. Nauka: Leningrad, 1976. P. 48–57. (in Russian)
- Dimitrienko Yu.I. Tensor Analysis and Nonlinear Tensor Functions. — Springer Dordrecht, 2002. 662 pp. https://doi.org/10.1007/978-94-017-3221-5
- Rogovoy A.A. A Formalized Approach to the Construction of Models of Deformable Solid Mechanics. Part I. Basic Relations of Continuum Mechanics. — Perm, Ural Branch of the Russian Academy of Sciences: Yekaterinburg, Russia, 2020. 288 pp. (in Russian) URL: https://www.elibrary.ru/item.asp?id=44190094 (accessed on 20 August 2024)
- Fedorenko R.P. Introduction to Computational Physics — MFTI, Moscow, 1994. 528 pp. (in Russian)
- Bo Yang, Salant R.F. Numerical analysis compares the lubrication of U seal and step seal // Sealing Technology. 2009. 2009 (3). P. 7–11. https://doi.org/10.1016/S1350-4789(09)70132-1
- Belforte G., Conte M., Manuello Bertetto A., Mazza L., Visconte C. Experimental and numerical evaluation of contact pressure in pneumatic seals // Tribology International. 2009. 42 (1). P. 169–175. https://doi.org/10.1016/j.triboint.2008.04.010
- Avrushchenko B.Kh. Rubber Seals. Khimiya, Leningrad, 1978. 136 pp. (in Russian)
- Bathe K.-J. Finite element procedures. Prentice Hall, 1996. 1037 pp.
- ELCUT A New Approach to Field Modeling. (in Russian) URL: https://elcut.ru (accessed on 20 August 2024)
- KD piston seal with asymmetric lips. URL: https://astonseals.com/pdf/prodotti/gb/KD.pdf (accessed on 20 August 2024)
- Kondakov L.A., Golubev A.I., Ovander V.B., et al. Uplotneniya i uplotnitel’naya tekhnika: spravochnik (Seals and Sealing Machines: Handbook), Eds.: Golubev A.I. and Kondakov L.A. Moscow: Mashinostroenie, 1986. 464 pp. (in Russian)
Supplementary files
