Modeling of Self-Assembly of Microinductors Produced Due to Residual Mechanical Stress
- Authors: Babushkin A.S.1, Selyukov R.V.1
-
Affiliations:
- NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch
- Issue: Vol 54, No 4 (2025)
- Pages: 291-300
- Section: MODELING
- URL: https://kazanmedjournal.ru/0544-1269/article/view/690994
- DOI: https://doi.org/10.31857/S0544126925040032
- EDN: https://elibrary.ru/qgolvt
- ID: 690994
Cite item
Abstract
The finite element method was used to simulate four designs of three-dimensional microinductors, the production of which is carried out by self-assembly using residual mechanical stress. During the simulation the deformation of blanks made of a 300 nm thick Cr film was calculated in the specified areas of which a gradient of mechanical stress was formed. The finite element method was also used to determine the inductance of the obtained microinductors.
Keywords
About the authors
A. S. Babushkin
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch
Author for correspondence.
Email: artem.yf-ftian@mail.ru
Yaroslavl, Russia
R. V. Selyukov
NRC “Kurchatov institute” – Valiev IPT, Yaroslavl Branch
Email: rvselyukov@mail.ru
Yaroslavl, Russia
References
- Varadan V.K., Vinoy K.J., Jose K.A. RF MEMS and their applications. – John Wiley & Sons, 2003. ISBN: 0-470-84308-X
- Hikmat O.F., Ali M.S.M. RF MEMS inductors and their applications — A review // Journal of Microelectromechanical systems. 2016. V. 26. P. 17—44. https://doi.org/10.1109/JMEMS.2016.2627039
- Shetty C. A detailed study of Qdc of 3D micro air-core inductors for integrated power supplies: Power supply in package (PSiP) and power supply on chip (PSoC) // Power Electronic Devices and Components. 2022. V. 2. P. 100006. https://doi.org/10.1016/j.pedc.2022.100006
- Lou J., Ren H, Chao X., Chen K., Bai H., Wang Z. Recent progress in the preparation technologies for micro metal coils // Micromachines. 2022. V. 13. № 6. P. 872. https://doi.org/10.3390/mi13060872
- Fang D.M., Wang X.N., Zhou Y., Zhao X.L. Fabrication and performance of a micromachined 3-D solenoid inductor // Microelectronics journal. 2006. V. 37. № 9. P. 948–951. https://doi.org/10.1016/j.mejo.2006.01.009
- Fang D.M., Zhou Y., Wang X.N., Zhao X.L. Surface micromachined high-performance RF MEMS inductors // Microsystem technologies. 2007. V. 13. P. 79–83. https://doi.org/10.1007/s00542-006-0262-4
- Xu T., Sun J., Wu H., Li H., Li H., Tao Z. 3D MEMS in-chip solenoid inductor with high inductance density for power MEMS device // IEEE Electron Device Letters. 2019. V. 40. №. 11. P. 1816–1819. https://doi.org/10.1109/LED.2019.2941003
- Le H.T., Haque R.I., Ouyang Z., Lee S.W., Fried S.I., Zhao D., Qiu M., Han A. MEMS inductor fabrication and emerging applications in power electronics and neurotechnologies // Microsyst Nanoeng. V. 7. P. 59. 2021. https://doi.org/10.1038/s41378-021-00275-w
- Woytasik M., Grandchamp J.P., Dufour-Gergam E., Gilles J.P., Megherbi S., Martincic E. Two-and three-dimensional microcoil fabrication process for three-axis magnetic sensors on flexible substrates // Sensors and Actuators A: Physical. 2006. Т. 132. № 1. С. 2–7. https://doi.org/10.1016/j.sna.2006.06.062
- Chua C.L. Fork D.K., Schuylenbergh K. Van, Lu J.P. Out-of-plane high-Q inductors on low-resistance silicon // Journal of Microelectromechanical Systems. 2003. V. 12. № 6. P. 989–995. https://doi.org/10.1109/JMEMS.2003.820274
- Weon D.H., Jeon J.H., Mohammadi S. High-Q micromachined three-dimensional integrated inductors for high-frequency applications // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2007. V. 25. № 1. P. 264–270. https://doi.org/10.1116/1.2433984
- Uchiyama S., Yang Z.Q., Toda A., Hayase M., Takagi H., Itoh T., Maeda R., Zhang Y. Novel MEMS-based fabrication technology of micro solenoid-type inductor // Journal of Micromechanics and Microengineering. 2013. V. 23. № 11. P. 114009. https://doi.org/10.1088/0960-1317/23/11/114009
- Yang C., Wu S.Y., Glick C., Choi Y.S., Hsu W., Lin L. 3D printed RF passive components by liquid metal filling // 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2015. P. 261–264. https://doi.org/10.1109/MEMSYS.2015.7050938
- Dechev N., Mills J.K., Cleghorn W.L. Mechanical fastener designs for use in the microassembly of 3d microstructures // ASME International Mechanical Engineering Congress and Exposition. – 2004. – V. 47144. – P. 447–456. https://doi.org/10.1115/IMECE2004-62212
- Bo R., Xu S., Yang Y., Zhang Y. Mechanically-guided 3D assembly for architected flexible electronics // Chemical Reviews. 2023. V. 123. № 18. P. 11137–11189. https://doi.org/10.1021/acs.chemrev.3c00335
- Zhang Z., Tian Z., Mei Y., Di Z. Shaping and structuring 2D materials via kirigami and origami // Materials Science and Engineering: R: Reports. 2021. V. 145. P. 100621. https://doi.org/10.1016/j.mser.2021.100621
- Karnaushenko D., Kang T., Bandari V.K., Zhu F., Schmidt O.G. 3D self-assembled microelectronic devices: concepts, materials, applications // Advanced Materials. 2020. V. 32. P. 1902994. https://doi.org/10.1002/adma.201902994
- Liu Z., Du H., Li Z.Y., Fang N.X., Li J. Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation // Apl Photonics. 2018. V. 3. № 10. https://doi.org/10.1063/1.5043065
- Mao Y., Zheng Y., Li C., Guo L., Pan Y., Zhu R., Xu J., Zhang W., Wu W. Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas // Advanced materials. 2017. V. 29. №. 19. P. 1606482. https://doi.org/10.1002/adma.201606482
- Babushkin A.S., Uvarov I.V., Amirov I.I. Effect of low-energy ion-plasma treatment on residual stresses in thin chromium films // Technical Physics. – 2018. V. 63. P. 1800–1807. https://doi.org/10.1134/S1063784218120228
- Babushkin A., Selyukov R., Amirov I. Effect of Ar ion-plasma treatment on residual stress in thin Cr films // Proc. of SPIE, 2019. V. 11022. P. 1102223–1. https://doi.org/10.1117/12.2521617
- Zienkiewicz O.C., Morgan K. Finite elements and approximation. – Courier Corporation, 2006. ISBN: 0-486-45301-4
Supplementary files
