UNIQUENESS OF THE ENTROPY SOLUTION TO THE DIRICHLET PROBLEM FOR AN ELLIPTIC EQUATION WITH A MEASURE-VALUED POTENTIAL IN A HYPERBOLIC SPACE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the Dirichlet problem in the hyperbolic space for a nonlinear equation of the second order with measure-valued potential. The assumptions on the structure of the equation are stated in terms of a generalized

作者简介

V. Vildanova

Institute of Mathematics with Computing Centre of Ufa Scientific Center of RAS

Email: gilvenera@mail.ru
Russia

参考

  1. Вильданова, В.Ф. Энтропийное решение для уравнения с мерозначным потенциалом в гиперболическом пространстве / В.Ф. Вильданова, Ф.Х. Мукминов // Мат. сб. — 2023. — Т. 214, № 11. — С. 37–62.
  2. Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
  3. An
  4. Кожевникова, Л.М. Эквивалентность энтропийных и ренормализованных решений нелинейной эллиптической задачи в пространствах Музилака–Орлича / Л.М. Кожевникова, А.П. Кашникова // Дифференц. уравнения. — 2023. — Т. 59, № 1. — С. 35–51.
  5. Kozhevnikova, L.M. and Kashnikova, A.P., Equivalence of entropy and renormalized solutions of a nonlinear elliptic problem in Musielak–Orlicz spaces, Differ. Equat., 2023, vol. 59, no. 1, pp. 34–50.
  6. Saintier, N. Nonlinear elliptic equations with measure valued absorption potential / N. Saintier, L. V’eron // Ann. Scuola Norm. Sup. Pisa Cl. Sci. — 2021. — V. 22, № 1. — P. 351–397.
  7. Malusa, A. Renormalized solutions to elliptic equations with measure data in unbounded domains / A. Malusa, M.M. Porzio // Nonlin. Anal. — 2007. — V. 67, № 8. — P. 2370–2389.
  8. Кашникова, А.П. Существование решений нелинейных эллиптических уравнений с данными в виде меры в пространствах Музилака–Орлича / А.П. Кашникова, Л.М. Кожевникова // Мат. сб. — 2022. — Т. 213, № 4. — С. 38–73.
  9. Kashnikova, A.P. and Kozhevnikova L.M., Existence of solutions of nonlinear elliptic equations with measure data in Musielak–Orlicz spaces, Sb. Math., 2022, vol. 213, no. 4, pp. 476–511.
  10. Vildanova, V.F. Perturbations of nonlinear elliptic operators by potentials in the space of multiplicators / V.F. Vildanova, F.Kh. Mukminov // J. Math. Sci. — 2021. — V. 257, № 5. — P. 569–578.
  11. Chlebicka, I. Measure data elliptic problems with generalized Orlicz growth / I. Chlebicka // Proc. Roy. Soc. Edinburgh. Sect. A. — 2023. — V. 153, № 2. — P. 588–618.
  12. Chlebicka, I. Essentially fully anisotropic Orlicz functions and uniqueness to measure data problem / I. Chlebicka, P. Nayar // Math. Methods Appl. Sci. — 2022. — V. 45, № 14. — P. 8503–8527.
  13. Musielak, J. Orlicz Spaces and Modular Spaces / J. Musielak. — Berlin : Springer-Verlag, 1983. — 222 p.
  14. Harjulehto, P. Orlicz Spaces and Generalized Orlicz Spaces / P. Harjulehto, P. H‥ast‥o. — Cham : Springer, 2019. — 167 p.
  15. Aubin, T. Nonlinear Analysis on Manifolds. Monge–Amp`ere Equations / T. Aubin. — New York : Springer-Verlag, 1982. — 204 p.
  16. Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces / P. Gwiazda, P. Wittbold, A. Wroblewska, A. Zimmermann // J. Differ. Equat. — 2012. — V. 253, № 2. — P. 635–666.
  17. Колмогоров, А.Н. Элементы теории функций и функционального анализа / А.Н. Колмогоров, С.В. Фомин. — М. : Наука, 1976. — 543 с.
  18. Kolmogorov, A.N. and Fomin, S.V., Elements of the Theory of Functions and Functional Analysis, Metric and Normed Spaces, Graylock Press, 1957.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024