A Continuous Method for Finding a Generalized Fixed Point of a Nonexpansive Mapping on a Set in a Hilbert Space

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We introduce the concept of a generalized fixed point of a nonexpansive operator on a convex closed set in a Hilbert space. To find this point, we construct a regularizing algorithm in the form of the Cauchy problem for a first-order differential equation and establish sufficient conditions for the strong convergence of the resulting approximations to a normal generalized fixed point under approximate specification of the nonexpansive operator and the convex closed set on which the desired generalized fixed point of the operator is located. Examples of parametric functions are given that ensure the convergence of the approximations in the norm of the Hilbert space to a normal generalized fixed point of the operator on the convex closed set in this space.

Sobre autores

I. Ryazantseva

Alekseev Nizhny Novgorod State Technical University, Nizhny Novgorod, 603600, Russia

Autor responsável pela correspondência
Email: lryazantseva@applmath.ru
г. Нижний Новгород, Россия

Bibliografia

  1. Alber Ya., Ryazantseva I. Nonlinear Ill-Posed Problems of Monotone Type. Dordrecht, 2006.
  2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., 1976.
  3. Вайнберг М.М. Вариационный метод и метод монотонных операторов в теории нелинейных уравнений. М., 1972.
  4. Рязанцева И.П. Избpанные главы теоpии опеpатоpов монотонного типа. Нижний Новгоpод, 2008.
  5. Васильев Ф.П. Методы решения экстремальных задач. М., 1981.
  6. Тpеногин В.А. Функциональный анализ. М., 1980.
  7. Browder F.E. Convergence of approximantes to fixed point of non-expansive nonlinear maps in Banach spaces // Arch. Ration Mech. Anal. 1967. V. 24. № 1. P. 82-90.
  8. Halperin B. Fixed points of nonexpansive maps // Bull. Amer. Math. Soc. 1967. V. 73. № 6. P. 957-961.
  9. Васин В.В., Агеев А.Л. Некорректные задачи с априорной информацией. Екатеринбург, 1993.
  10. Бакушинский А.Б., Гончарский А.В. Некорректные задачи. Численные методы и приложения. М., 1989.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023