Solution Blow-Up and Global Solvability of the Cauchy Problem for a Model Third-Order Partial Differential Equation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We obtain conditions for the existence of a global solution and the blow-up of the solution of the Cauchy problem on a finite time interval for a nonlinear third-order partial differential equation generalizing the equation of torsion vibrations of a cylindrical rod with allowance for internal and external damping modeling the propagation of longitudinal stress waves along a one-dimensional viscoelastic rod whose the material obeys Voigt–Kelvin medium deformation law.

Sobre autores

Kh. Umarov

Academy of Sciences of Chechen Republic, Groznyi, 364024, Russia; Chechen State Pedagogical University, Groznyi, 364068, Russia

Autor responsável pela correspondência
Email: umarov50@mail.ru
г. Грозный, Россия

Bibliografia

  1. Данфорд Н., Шварц Дж.Т. Линейные операторы. Общая теория. М., 1962.
  2. Филиппов А.П. Колебания деформируемых систем. М., 1970.
  3. Ерофеев В.И., Кажаев В.В., Семерикова Н.П. Волны в стержнях. Дисперсия. Диссипация. Нелинейность. М., 2002.
  4. Greenberg J.M., McCamy R.C., Mizel V.J. On the existence, uniqueness and stability of solutions of the equation $sigma'(u_x)u_xx+lambdau_xtx=rho_0u_tt$ // J. Math. and Mech. 1968. V. 17. P. 707-728.
  5. Webb G.F. Existence and asymptotic behavior for a strongly damped nonlinear wave equation // Canad. J. Math. 1980. V. 32. № 3. P. 631-643.
  6. Andrews G. On the existence of solutions to the equation $u_tt=u_xxt+sigma(u_x)_x$ // J. Differ. Equat. 1980. V. 35. № 2. P. 200-231.
  7. Кожанов А.И., Ларькин Н.А., Яненко Н.Н. Смешанная задача для одного класса уравнений третьего порядка // Сиб. мат. журн. 1981. Т. 22. № 6. С. 81-86.
  8. Ларькин Н.А., Новиков В.A., Яненко H.H. Нелинейные уравнения переменного типа. Новосибирск, 1983.
  9. Васильев В.В., Крейн С.Г., Пискарев С.И. Полугруппы операторов, косинус оператор-функции и линейные дифференциальные уравнения // Итоги науки и техники. Сер. Мат. анализ. Т. 28. М., 1990. С. 87-202.
  10. Dragomir S.S. Some Gronwall Type Inequalities and Applications. Melbourne, 2002.
  11. Appell J., Zabreiko P.P. Nonlinear Superposition Operators. Cambridge, 1990.
  12. Benjamin T.B., Bona J.L., Mahony J.J. Model equations for long waves in nonlinear dispersive systems // Philos. Trans. Roy. Soc. London. 1972. V. 272. P. 47-78. Корпусов М.О., Свешников А.Г., Юшков Е.В. Методы теории разрушения решений нелинейных уравнений математической физики. М., 2014.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023