Heat transfer and vapor bubble formation during boiling of magnetic fluid on a single vapor formation center in an alternating magnetic field
- 作者: Simonovsky А.Y.1,2, Zakinyan A.R.2
-
隶属关系:
- Stavropol State Agrarian University
- North Caucasus Federal University
- 期: 卷 88, 编号 10 (2024)
- 页面: 1621-1625
- 栏目: Microfluidics and ferrohydrodynamics of magnetic colloids
- URL: https://kazanmedjournal.ru/0367-6765/article/view/681733
- DOI: https://doi.org/10.31857/S0367676524100182
- EDN: https://elibrary.ru/DSHEVJ
- ID: 681733
如何引用文章
详细
The frequency of vapor bubble formation and heat transfer during boiling of a magnetic fluid in a homogeneous alternating horizontal magnetic field are studied experimentally. Bubble formation occurs at a single vapor formation center. To measure the frequency of vapor bubble formation, an induction method based on the occurrence of induction current in the coil turns through which the vapor bubbles move is used. It is found that the specific heat flux and the frequency of vapor bubble formation depend significantly on the frequency of the magnetic field. The obtained results indicate the possibility of effective non-contact control of the boiling process of magnetic fluid, which may have practical application.
全文:

作者简介
А. Simonovsky
Stavropol State Agrarian University; North Caucasus Federal University
编辑信件的主要联系方式.
Email: simonovchkij@mail.ru
俄罗斯联邦, Stavropol; Stavropol
A. Zakinyan
North Caucasus Federal University
Email: simonovchkij@mail.ru
俄罗斯联邦, Stavropol
参考
- Takahashi M., Shinbo K., Ohkawa R. et al. // J. Magn. Magn. Mater. 1993. V. 122. P. 301.
- Shuchi S., Sakatani K., Yamaguchi H. // J. Mech. Eng. Sci. 2004. V. 218. P. 223.
- Mohammadpourfard M., Aminfar H., Sahraro M. // Heat Mass Transf. 2014. V. 50. P. 1167.
- Naphon P. // Int. J. Thermophys. 2015. V. 36. P. 2810.
- Abdollahi A., Salimpour M.R., Etesami N. // Appl. Therm. Eng. 2017. V. 111. P. 1101.
- Guo K., Li H., Feng Y., Wang T., Zhao J. // Int. J. Heat Mass Transf. 2019. V. 134. P. 17.
- Sarafraz M.M., Pourmehran O., Yang B. et al. // Int. J. Therm. Sci. 2020. V. 147. Art. No. 106131.
- Yanovskii A.A., Simonovskii A.Ya. // Surf. Eng. Appl. Electrochem. 2023. V. 59. P. 452.
- Simonovskii A.Ya., Yanovskii A.A., Zakinyan A.R. // J. Magn. Magn. Mater. 2024. V. 589. Art. No. 171557.
- Gogosov V.V., Simonovskii A.Ya., Smolkin R.D. // J. Magn. Magn. Mater. 1990. V. 85. P. 227.
- Khoshmehr H.H., Saboonchi A., Shafii M.B., Jahani N. // Appl. Therm. Eng. 2014. V. 64. P. 331.
- Kole M., Khandekar S. // J. Magn. Magn. Mater. 2021. V. 537. Art. No. 168222.
- Zandabad H.J., Jahanshaloo L., Aminfar H., Mohammadpourfard M. // Exp. Heat Transf. 2022. V. 35. P. 341.
- Tabrizi A.H., Aminfar H., Mohammadpourfard M., Zonouzi S.A. // Heat Transf. Eng. 2023. V. 44. P. 512.
- Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. Р. 300.
补充文件
