Features of the formation of a labyrinth structure in thin layers of magnetic fluids in a constant electric field

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We presented the results of studies of structural transformations in magnetic fluids when exposed to a constant electric field. The features of the formation of structural lattices in thin layers of colloids in an electric field directed perpendicular to the plane of the layer, as well as under the additional influence of a magnetic field, have been studied. New results were obtained related to the dependence of the threshold (critical) value of the electric field strength corresponding to the formation of a labyrinthine structure on the strength of an additionally applied magnetic field, layer thickness and temperature. The dependences of the formation time of the structure under study on temperature and the strength of an additionally applied magnetic field have been studied. A thermally induced effect of the appearance of a labyrinthine structure in a magnetic colloid in the subcritical region of the operating electric field strength under additional exposure to laser radiation has been discovered.

Full Text

Restricted Access

About the authors

E. S. Beketova

North Caucasus Federal University

Author for correspondence.
Email: tkacheva_es.86@mail.ru
Russian Federation, Stavropol

V. D. Mkrtchyan

North Caucasus Federal University

Email: tkacheva_es.86@mail.ru
Russian Federation, Stavropol

Yu. I. Dikanskii

North Caucasus Federal University

Email: tkacheva_es.86@mail.ru
Russian Federation, Stavropol

References

  1. Rosensweig R.E. Ferrohydrodynamics. Cambridge: Cambridge University Press, 1985.
  2. Такетоми С., Тикадзуми С. Магнитные жидкости. М.: Мир, 1993. 272 с.
  3. Blums E., Cebers A.O., Maiorov M.M. Magnetic fluids. Berlin: Walter de Gruyter, 1997.
  4. Torres-Díaz I., Rinaldi C. // Soft Matter. 2014. V. 10. Art. No. 8584.
  5. Zhang X., Sun L., Yu Y, Zhao Y. // Adv. Mater. 2019. V. 31. Art. No. 1903497.
  6. Shasha C., Krishnan K.M. // Adv. Mater. 2020. V. 33. Art. No. 1904131.
  7. Гареев К.Г., Непомнящая Э.К. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 990; Gareev K.G., Nepomnyashchaya E.K. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 904.
  8. Диканский Ю.И., Куникин С.А. // Изв. РАН. Сер. физ. 2019. T. 83. № 12. С. 1704.
  9. Белых С.С., Ерин К.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 962. Belykh S.S., Yerin C.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 878.
  10. Ряполов П.А., Соколов Е.А., Шельдешева Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 347; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  11. Диканский Ю.И., Нечаева О.А. // Коллоид. журн. 2003. Т. 65. № 3. С. 311; Dikanskii Yu.I., Nechaeva O.A. // Colloid J. 2003. V. 65. No. 3. P. 305.
  12. Диканский Ю.И., Закинян А.Р., Коробов М.И. // Коллоид. журн. 2015. Т. 77. № 1. С. 19; Dikanskii Y.I., Zakinyan A.R., Korobov M.I. // Colloid. J. 2015. V. 77. No. 1. P. 16.
  13. Ahme A.M., Zakinyan A.R. Waleed S.A. // Chem. Phys. Lett. 2023. V. 817. Art. No. 140413.
  14. Dikansky Y.I., Drozdov A.S., Eskova I.V. et al. // Magnetochemistry. 2023. V. 9. No. 9. Art. No. 207.
  15. Бекетова Е.С., Нечаева О.А., Мкртчян В.Д. и др. // Коллоид. журн. 2021. T. 83. № 2. С. 157; Beketova E.S., Nechaeva O.A., Mkrtchyan V.D. et al. // Colloid J. 2021. V. 83. No. 2. P. 189.
  16. Мкртчян В.Д., Диканский Ю.И. // Коллоид. журн. 2022. T. 84. № 6. С. 715; Mkrtchyan V.D., Dikanskii Yu.I. // Colloid J. 2022. V. 84. No. 6. P. 715.
  17. Чеканов В.В. // В кн.: Физические свойства магнитных жидкостей. Свердловск: УНЦ АН СССР, 1983. С. 4249.
  18. Пшеничников А.Ф., Шурубур Ю.И. // Изв. АН СССР. Сер. физ. 1987. Т. 51. № 6. C. 1081.
  19. Диканский Ю.И., Полихрониди Н.Г., Балабанов К.А. // Магнит. гидродинам. 1988. № 2. С. 87; Dikanskii Yu.I., Polikhronidi N.G., Balabanov K.A. // Magnetohydrodynamics. 1988. V. 24. No. 2. P. 211.
  20. Буевич Ю.А., Иванов А.О. // Магнит. гидродинам. 1990. № 2. С. 33; Buevich Yu.A., Ivanov A.O. // Magnetohydrodynamics. 1990. V. 26. No. 2. P. 160.
  21. Балабанов К.А., Диканский Ю.И., Полихрониди Н.Г. // Магнит. гидродинам. 1989. № 1. 117. C. 118; Balabanov K.A., Dikanskii Yu.I., Polikhronidi N.G. // Magnetohydrodynamics. 1989. V. 25. No. 1. P. 106.
  22. Духин С.С., Экстрела-Льопис В.Р., Жолковский Э. Электроповерхностные явления и электрофильтрование. Киев: Наукова думка, 1985. 285 с.
  23. Зубарев А.Ю., Искакова Л.Ю. // Коллоид. журн. 2003. Т. 65. № 2. С. 159; Zubarev A.Y., Iskakova L.Y. // Colloid J. 2022.V. 65. No. 2. P. 151
  24. Диканский Ю.И., Вегера Ж.Г., Закинян Р.Г. и др. // Коллоид. журн. 2005. Т. 67. № 2. С. 327; Dikanskii Y.I., Vegera Z.G., Zakinyan R.G. et al. // Colloid J. 2005. V. 67. No. 2. P. 134.
  25. Trau M., Sankaran S., Saville D.A. et al. // Langmuir. 1995. V. 11. No. 12. P. 4665.
  26. Sato S., Sano M. // Langmuir. 2007. V. 23. P. 10984.
  27. Han Y., Grier D.G. // J. Chem. Phys. 2006. V. 125. P. 144707.
  28. Han Y., Grier D.G. // J. Chem. Phys. 2012. V. 137. P. 14504.
  29. Фертман Е.Е. Магнитные жидкости. Минск: Вышейшая школа, 1988. 184 c.
  30. Жакин А.И., Кузько А.Е., Кузьменко А.П. и др. // Электр. обраб. матер. 2022. Т. 58. № 1. С. 41.
  31. Стишков Ю.К. Электрофизические процессы в жидкостях при воздействии сильных электрических полей. М.: Юстицинформ, 2019. 262 с.
  32. Остроумов Г.А. Взаимодействие электрических и гидродинамических полей. М.: Наука, 1979. 320 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure formed under the influence of a constant electric field in a thin layer of different samples: sample No. 1 (layer thickness 20 μm, field strength 200 kV/m) (a), sample No. 2 (layer thickness 20 μm, field strength 495 kV/m) (b), sample No. 3 (layer thickness 20 μm, field strength 1 MV/m) (c), sample No. 4 (layer thickness 40 μm, field strength 40 kV/m) (d).

Download (271KB)
3. Fig. 2. Dependence of the threshold voltage corresponding to the onset of structure formation on the additional effect of the magnetic field at different sample layer thicknesses; the magnetic field is directed perpendicular to the electric field strength vector (along the layer plane) (a); the magnetic field is directed parallel to the electric field vector (perpendicular to the layer plane) (b). Curves 1, 2 and 3 on both graphs correspond to layer thicknesses of 6 μm, 24 μm and 36 μm, respectively.

Download (50KB)
4. Fig. 3. Change in the labyrinth structure with decreasing sample temperature: 1 — t = 25°C, 2 — t = 20°C, 3 — t = 15°C and with additional application of a constant magnetic field directed along the plane of the layer (a); 1 — H = 0 A/m, 2 — H = 550 A/m, 3 — H = 1.3 kA/m (b).

Download (592KB)
5. Fig. 4. Dependence of the structure formation time on the magnetic field strength directed perpendicular to the electric field vector (a) and parallel to it (b) for different sample layer thicknesses (1–6 μm, 2–24 μm, 3–36 μm).

Download (40KB)
6. Fig. 5. Dependence of the time of transformation of the labyrinth structure into a stripe structure on the magnetic field strength at different voltage values ​​on the cell electrodes: 1–3.4 V, 2–2.8 V, 3–3 V, layer thickness 20 μm.

Download (17KB)
7. Fig. 6. Diffraction scattering patterns of laser beams of different powers, obtained on the screen after they passed through a thin layer of magnetic colloid (sample No. 1), subjected to the action of an electric field, the intensity of which does not exceed the threshold value: when using a low-power laser (left) (a), a laser with higher power (right) (b), the same, with the simultaneous passage of beams from both lasers through the same area of ​​the layer (c, d).

Download (74KB)

Copyright (c) 2024 Russian Academy of Sciences