Study of electrochemical etching surface of ultrafine-grained nickel using scanning tunneling microscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An approach that allows a qualitative and quantitative analysis of the grain structure of ultrafine grained nickel by electrochemical etching surface is proposed. The data on the etching relief of ultrafine grained nickel obtained by scanning tunneling microscopy have been analyzed. The bimodality of the structure was revealed, which was confirmed by statistical analysis.

About the authors

N. S. Chikunova

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

A. V. Stolbovsky

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

S. A. Murzinova

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

R. M. Falahutdinov

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

I. V. Blinov

Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: chikunova@imp.uran.ru
Russia, 620137, Yekaterinburg

References

  1. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. // Prog. Mater. Sci. 2000. V. 45. No. 2. P. 103.
  2. Langdon T.G. // Acta Mater. 2013. V. 61. No. 19. P. 7035.
  3. Estrin Y., Vinogradov A. // Acta Mater. 2013. V. 61. No. 3. P. 782.
  4. Sauvage X., Wilde G., Divinski S.V. et al. // Mater. Sci. Eng. A. 2012. V. 540. P. 1.
  5. Divinski S.V. // Diff. Found. 2015. V. 5. P. 57.
  6. Wilde G., Divinski S. // Mater. Trans. 2019. V. 60. No. 7. P. 1302.
  7. Watanabe T. // Res. Mech. 1984. V. 11. No. 1. P. 47.
  8. Watanabe T., Tsurekawa S. // Acta Mater. 1999. V. 47. No. 15. P. 4171.
  9. Emeis F., Peterlechner M., Divinski S.V., Wilde G. // Acta Mater. 2018. V. 150. P. 262.
  10. Detor A.J., Schuh C.A. // J. Mater. Res. 2007. V. 22. No. 11. P. 3233.
  11. Gertsman V. Yu., Birringer R. // Scripta Metall. Mater. 1994. V. 30. No. 5. P. 577.
  12. Popov V.V., Stolbovsky A.V., Popova E.N., Pilyugin V.P. // Def. Diff. Forum. 2010. V. 297–301. P. 1312.
  13. Воронова Л.М., Дегтярев М.В., Чащухина Т.И. // ФММ. 2021. Т. 122. № 6. С. 600; Voronova L.M., Degtyarev M.V., Chashchukhina T.I. // Phys. Met. Metallogr. 2021. V. 122. No. 6. P. 559.
  14. Stolbovsky A. // Mater. Today. Proc. 2021. V. 38. No. 4. P. 1817.
  15. Liu X., Choi D., Beladi H. et al. // Scr. Mater. 2013. V. 69. No. 5. P. 413.
  16. Rohrer G.S., Saylor D.M., El-Dasher B. et al. // Zeitschrift Fur Met. 2004. V. 95. No. 4. P. 197.
  17. Amouyal Y., Rabkin E. // Acta Mater. 2007. V. 55. No. 20. P. 6681.
  18. Zimmerman J., Sharma A., Divinski S.V., Rabkin E. // Scr. Mater. 2020. V. 182. P. 90.
  19. Saylor D., Rohrer G. // J. Amer. Ceram. Soc. 1999. V. 82. No. 6. P. 1529.
  20. Кузнецов П.В., Рахматулина Т.В., Беляева И.В., Корзников А.В. // ФММ. 2017. Т. 118. No. 3. С. 255; Kuznetsov P.V., Rakhmatulina T.V., Belyaeva I.V., Korznikov A.V. // Phys. Met. Metallogr. 2017. V. 118. No. 3. P. 241.
  21. Соловьева Ю.В., Старенченко С.В., Старенченко В.А. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1229; Solov’eva Yu.V., Starenchenko S.V., Starenchenko V.A. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 941.
  22. Кодиров И.С., Рааб Г.И., Алешин Г.Н. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 619; Kodirov I.S., Raab G.I., Aleshin G.N. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 508.
  23. Соловьев А.Н., Старенченко С.В., Соловьева Ю.В., Старенченко В.А. // Изв. РАН. Сер. физ. 2019. Т. 83. № 6. С. 806; Solov’ev A.N., Starenchenko S.V., Solov’eva Yu.V., Starenchenko V.A. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 6. P. 733.
  24. Шурыгина Н.А., Черетаева А.О., Глезер А.М. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 9. С. 1226; Shurygina N.A., Cheretaeva A.O., Glezer A.M. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 9. P. 1113.
  25. Stolbovsky A. // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 969. No. 1. Art. No. 012084.
  26. Ronneberger O., Fischer P., Brox T. // Lect. Notes Comput. Sci. 2015. V. 9351. P. 234.
  27. Meyer F. // 1992 Int. Conf. Image Proc. Appl. 1992. V. 354. P. 303.
  28. Dempster A.P., Laird N.M., Rubin D.B. // J. Royal Stat. Soc. B. 1977. V. 39. No. 1. P. 1.
  29. Bock D., Velleman P., De Veaux R., Bullard F. Stats: Modeling the World. 5th ed. Pearson, 2019. 864 p.
  30. Voronova L.M., Degtyarev M.V., Chashchukhina T.I. et al. // Mater. Sci. Eng. A. 2015. V. 639. P. 155.
  31. Woods J.W. Multidimensional signal, image, and video processing and coding. 2nd ed. Elsevier Inc., 2011. 616 p.
  32. Walton W. // Nature. 1948. V. 162. P. 329.
  33. Glezer A.M., Tomchuk A.A., Sundeev R.V., Gorshenkov M.V. // Mater. Lett. 2015. V. 161. P. 360.
  34. McLachlan G., Peel D. Finite mixture models. John Wiley & Sons Inc., 2000. 456 p.
  35. Осинников Е.В., Мурзинова С.А., Истомина А.Ю. и др. // ФММ. 2021. Т. 122. № 10. С. 1049; Osinnikov E.V., Murzinova S.A., Istomina A.Yu. et al. // Phys. Met. Metallogr. 2021. V. 122. No. 10. P. 976.
  36. Попов В.В., Попова Е.Н., Кузнецов Д.Д. и др. // ФММ. 2014. Т. 115. № 7. С. 727; Popov V.V., Popova E.N., Kuznetsov D.D. et al. // Phys. Met. Metallogr. 2014. V. 115. No. 7. P. 682.
  37. Guo X.K., Dong H.L., Luo Z.P. et al. // Scr. Mater. 2022. V. 214. Art. No. 114656.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (89KB)
4.

Download (148KB)

Copyright (c) 2023 Н.С. Чикунова, А.В. Столбовский, С.А. Мурзинова, Р.М. Фалахутдинов, И.В. Блинов