Comparison of energy transport in plasma with ECR heating on the L-2M stellarator and T-10 tokamak
- Autores: Dnestrovskij Y.N.1, Melnikov A.V.1,2,3, Lysenko S.E.1, Meshcheryakov A.I.4, Kharchev N.K.1,4, Vasilkov D.G.4, Grebenshchikov S.E.4, Kasyanova N.V.1,3, Cherkasov S.V.1, Vafin I.Y.4, Eliseev L.G.1, Sychugov D.Y.1,5
-
Afiliações:
- National Research Centre «Kurchatov Institute»
- National Research Nuclear University MEPHI
- Moscow Institute of Physics and Technology
- Prokhorov General Physics Institute, Russian Academy of Sciences
- Moscow State University
- Edição: Volume 50, Nº 5 (2024)
- Páginas: 526-542
- Seção: TOKAMAKS
- URL: https://kazanmedjournal.ru/0367-2921/article/view/668762
- DOI: https://doi.org/10.31857/S0367292124050026
- EDN: https://elibrary.ru/PWWXPV
- ID: 668762
Citar
Texto integral
Resumo
Plasma was heated at the second harmonic of electron cyclotron resonance (ECR) in the L-2M stellarator and the T-10 tokamak. The concept of equivalent tokamak and stellarator discharges was extended to the case of both full and partial absorption of EC power. Comparison of experimental electron temperature profiles with profiles calculated using the canonical profiles transport model allows us to estimate the efficiency of ECR heating in the L-2M discharges without suprathermal electrons, which distort the distribution function, preventing reliable measurements of temperature. The dependence of the ECR heating efficiency on the plasma density was obtained, describing experiments on the L-2M and TJ-II stellarators, and on the T-10 tokamak. The energy characteristics (the stored energy and the confinement time) for L-2M discharges were calculated. Predictions for ECR heating in the T-15MD tokamak are considered. The features of solving the ill-posed transport problem for the L-2M are discussed.
Sobre autores
Yu. Dnestrovskij
National Research Centre «Kurchatov Institute»
Autor responsável pela correspondência
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 123182
A. Melnikov
National Research Centre «Kurchatov Institute»; National Research Nuclear University MEPHI; Moscow Institute of Physics and Technology
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 123182; Moscow, 115409; Dolgoprudny, 141701
S. Lysenko
National Research Centre «Kurchatov Institute»
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 123182
A. Meshcheryakov
Prokhorov General Physics Institute, Russian Academy of Sciences
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 119991
N. Kharchev
National Research Centre «Kurchatov Institute»; Prokhorov General Physics Institute, Russian Academy of Sciences
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 123182; Moscow, 119991
D. Vasilkov
Prokhorov General Physics Institute, Russian Academy of Sciences
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 119991
S. Grebenshchikov
Prokhorov General Physics Institute, Russian Academy of Sciences
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 119991
N. Kasyanova
National Research Centre «Kurchatov Institute»; Moscow Institute of Physics and Technology
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 123182; Dolgoprudny, 141701
S. Cherkasov
National Research Centre «Kurchatov Institute»
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 123182
I. Vafin
Prokhorov General Physics Institute, Russian Academy of Sciences
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 119991
L. Eliseev
National Research Centre «Kurchatov Institute»
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 123182
D. Sychugov
National Research Centre «Kurchatov Institute»; Moscow State University
Email: Lysenko_SE@nrcki.ru
Rússia, Moscow, 123182; Moscow, 119991
Bibliografia
- Dnestrovskij Yu.N., Connor J.W., Cherkasov S.V., Danilov A.V., Dnestrovskij A.Yu., Lysenko S.E., Roach C.M., Walsh M. // Plasma Phys. Control. Fusion. 2007. V. 49. P. 1477. doi: 10.1088/0741-3335/49/9/009
- Днестровский Ю.Н. Самоорганизация горячей плазмы. М: НИЦ «Курчатовский институт», 2013. 172 c.
- Dnestrovskij Yu.N., Danilov A.V., Dnestrovskij A.Yu., Lysenko S.E., Melnikov A.V., Nemets A.R., Nurgaliev M.R., Subbotin G.F., Solovev N.A., Sychugov D.Yu., Cherkasov S.V. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 055012. doi: 10.1088/1361-6587/abdc9b
- Dnestrovskij Yu.N., Melnikov A.V., Lopez-Bruna D., Dnestrovskij A.Yu., Cherkasov S.V., Danilov A.V., Eliseev L.G., Khabanov F.O., Lysenko S.E., Sychugov D.Yu. // Plasma Phys. Control. Fusion. 2023. V. 65. P. 015011. doi: 10.1088/1361-6587/aca35a
- Мещеряков А.И., Акулина Д.К., Вафин И.Ю., Гладков Г.А., Гребенщиков С.Е. // Физика плазмы. 2006. Т. 32. С. 122.
- Мещеряков А.И. Вафин И. Ю., Гришина И. А. // Физика плазмы. 2020. Т. 46. С. 1144. doi: 10.31857/S0367292120120057
- Гладков Г.А. Профили электронной температуры и особенности ЭЦР-нагрева высокотемпературной плазмы стелларатора Л-2М, полученные методом измерения электронно-циклотронного излучения. Диссертация, ИОФ РАН 2006. https://www.dissercat.com/content/profili-elektronnoi-temperatury-i-osobennosti-etsr-nagreva-vysokotemperaturnoi-plazmy-stella.
- Днестровский Ю.Н., Мельников А.В., Андреев В.Ф., Лысенко С.Е., Нургалиев М.Р., Шалашов А.Г. // Письма ЖЭТФ. 2023. Т. 118. С. 252. doi: 10.31857/S123456782316005X
- Stroth U., Fuchert G., Beurskens M.N.A., Birkenmeier G., Schneider P.A., Scott E.R., Brunner K.J., Günzkofer F., Hacker P., Kardaun O. et al. // Nucl. Fusion. 2021. V. 61. P. 016003. doi: 10.1088/1741-4326/abbc4a
- Kharchev N.K., Batanov G.M., Kolik L.V., Malakhov D.V., Petrov A.Ye., Sarksyan K.A., Skvortsova N.N., Stepakhin V.D., Belousov V.I., Malygin S.A., Tai Y.M. // Rev. Sci. Instrum. 2013. V. 84. P. 013507. doi: 10.1063/1.4773544
- Днестровский Ю.Н., Вершков В.А. Данилов А.В., Днестровский А.Ю., Лысенко С.Е., Мельников А.В., Субботин Г.Ф., Сычугов Д.Ю., Черкасов С.В., Шелухин Д.А. // Физика плазмы. 2019. Т. 45. № 3. С. 226. doi: 10.1134/S0367292119020057
- Гребенщиков С.Е., Вафин И.Ю., Мещеряков А.И., Нечаев Ю.И. // Физика плазмы. 2008. Т. 34. С. 1098.
- Gusakov E.Z., Popov A.Yu., Meshcheryakov A.I., Grishina I.A., Tereshchenko M.A. // Phys. Plasmas. 2023. V. 30. P. 122112. doi: 10.1063/5.0185657
- Shalashov A.G., Suvorov E.V. // Plasma Phys. Control. Fusion. 2003. V. 45. P. 1779.
- Касьянова Н.В., Днестровский Ю.Н., Мельников А.В. // Физика плазмы. 2024. Т. 50. С. 283.
- Pereverzev G.V., Yushmanov P.N. ASTRA – Automated System for TRansport Analysis. Preprint IPP 5/98. Garching, Germany, 2002.
Arquivos suplementares
