Comparison of energy transport in plasma with ECR heating on the L-2M stellarator and T-10 tokamak

Cover Page

Cite item

Full Text

Abstract

Plasma was heated at the second harmonic of electron cyclotron resonance (ECR) in the L-2M stellarator and the T-10 tokamak. The concept of equivalent tokamak and stellarator discharges was extended to the case of both full and partial absorption of EC power. Comparison of experimental electron temperature profiles with profiles calculated using the canonical profiles transport model allows us to estimate the efficiency of ECR heating in the L-2M discharges without suprathermal electrons, which distort the distribution function, preventing reliable measurements of temperature. The dependence of the ECR heating efficiency on the plasma density was obtained, describing experiments on the L-2M and TJ-II stellarators, and on the T-10 tokamak. The energy characteristics (the stored energy and the confinement time) for L-2M discharges were calculated. Predictions for ECR heating in the T-15MD tokamak are considered. The features of solving the ill-posed transport problem for the L-2M are discussed.

About the authors

Yu. N. Dnestrovskij

National Research Centre «Kurchatov Institute»

Author for correspondence.
Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182

A. V. Melnikov

National Research Centre «Kurchatov Institute»; National Research Nuclear University MEPHI; Moscow Institute of Physics and Technology

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182; Moscow, 115409; Dolgoprudny, 141701

S. E. Lysenko

National Research Centre «Kurchatov Institute»

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182

A. I. Meshcheryakov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 119991

N. K. Kharchev

National Research Centre «Kurchatov Institute»; Prokhorov General Physics Institute, Russian Academy of Sciences

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182; Moscow, 119991

D. G. Vasilkov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 119991

S. E. Grebenshchikov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 119991

N. V. Kasyanova

National Research Centre «Kurchatov Institute»; Moscow Institute of Physics and Technology

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182; Dolgoprudny, 141701

S. V. Cherkasov

National Research Centre «Kurchatov Institute»

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182

I. Y. Vafin

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 119991

L. G. Eliseev

National Research Centre «Kurchatov Institute»

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182

D. Yu. Sychugov

National Research Centre «Kurchatov Institute»; Moscow State University

Email: Lysenko_SE@nrcki.ru
Russian Federation, Moscow, 123182; Moscow, 119991

References

  1. Dnestrovskij Yu.N., Connor J.W., Cherkasov S.V., Danilov A.V., Dnestrovskij A.Yu., Lysenko S.E., Roach C.M., Walsh M. // Plasma Phys. Control. Fusion. 2007. V. 49. P. 1477. doi: 10.1088/0741-3335/49/9/009
  2. Днестровский Ю.Н. Самоорганизация горячей плазмы. М: НИЦ «Курчатовский институт», 2013. 172 c.
  3. Dnestrovskij Yu.N., Danilov A.V., Dnestrovskij A.Yu., Lysenko S.E., Melnikov A.V., Nemets A.R., Nurgaliev M.R., Subbotin G.F., Solovev N.A., Sychugov D.Yu., Cherkasov S.V. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 055012. doi: 10.1088/1361-6587/abdc9b
  4. Dnestrovskij Yu.N., Melnikov A.V., Lopez-Bruna D., Dnestrovskij A.Yu., Cherkasov S.V., Danilov A.V., Eliseev L.G., Khabanov F.O., Lysenko S.E., Sychugov D.Yu. // Plasma Phys. Control. Fusion. 2023. V. 65. P. 015011. doi: 10.1088/1361-6587/aca35a
  5. Мещеряков А.И., Акулина Д.К., Вафин И.Ю., Гладков Г.А., Гребенщиков С.Е. // Физика плазмы. 2006. Т. 32. С. 122.
  6. Мещеряков А.И. Вафин И. Ю., Гришина И. А. // Физика плазмы. 2020. Т. 46. С. 1144. doi: 10.31857/S0367292120120057
  7. Гладков Г.А. Профили электронной температуры и особенности ЭЦР-нагрева высокотемпературной плазмы стелларатора Л-2М, полученные методом измерения электронно-циклотронного излучения. Диссертация, ИОФ РАН 2006. https://www.dissercat.com/content/profili-elektronnoi-temperatury-i-osobennosti-etsr-nagreva-vysokotemperaturnoi-plazmy-stella.
  8. Днестровский Ю.Н., Мельников А.В., Андреев В.Ф., Лысенко С.Е., Нургалиев М.Р., Шалашов А.Г. // Письма ЖЭТФ. 2023. Т. 118. С. 252. doi: 10.31857/S123456782316005X
  9. Stroth U., Fuchert G., Beurskens M.N.A., Birkenmeier G., Schneider P.A., Scott E.R., Brunner K.J., Günzkofer F., Hacker P., Kardaun O. et al. // Nucl. Fusion. 2021. V. 61. P. 016003. doi: 10.1088/1741-4326/abbc4a
  10. Kharchev N.K., Batanov G.M., Kolik L.V., Malakhov D.V., Petrov A.Ye., Sarksyan K.A., Skvortsova N.N., Stepakhin V.D., Belousov V.I., Malygin S.A., Tai Y.M. // Rev. Sci. Instrum. 2013. V. 84. P. 013507. doi: 10.1063/1.4773544
  11. Днестровский Ю.Н., Вершков В.А. Данилов А.В., Днестровский А.Ю., Лысенко С.Е., Мельников А.В., Субботин Г.Ф., Сычугов Д.Ю., Черкасов С.В., Шелухин Д.А. // Физика плазмы. 2019. Т. 45. № 3. С. 226. doi: 10.1134/S0367292119020057
  12. Гребенщиков С.Е., Вафин И.Ю., Мещеряков А.И., Нечаев Ю.И. // Физика плазмы. 2008. Т. 34. С. 1098.
  13. Gusakov E.Z., Popov A.Yu., Meshcheryakov A.I., Grishina I.A., Tereshchenko M.A. // Phys. Plasmas. 2023. V. 30. P. 122112. doi: 10.1063/5.0185657
  14. Shalashov A.G., Suvorov E.V. // Plasma Phys. Control. Fusion. 2003. V. 45. P. 1779.
  15. Касьянова Н.В., Днестровский Ю.Н., Мельников А.В. // Физика плазмы. 2024. Т. 50. С. 283.
  16. Pereverzev G.V., Yushmanov P.N. ASTRA – Automated System for TRansport Analysis. Preprint IPP 5/98. Garching, Germany, 2002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences