Effect of Synthesis Conditions on the Composition of Palladium Sulfides

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The formation process of Pd-S-containing nanoparticles from Pd(acac)2 and orthorhombic sulfur in hydrogen under mild conditions at different Pd:S ratios was studied using a combination of UV spectroscopy, high-resolution transmission electron microscopy, electron diffraction and X-ray powder diffraction methods, nanoparticles’ average size, phase and elemental composition, morphology and microstructure were determined. The transition of solid solutions of sulfur in palladium or in palladium sulfide into palladium sulfides enriched in sulfur after high-temperature treatment of Pd–S-containing samples was established. The possibility of obtaining phase-pure palladium sulfides Pd4S, PdS without loss of sulfur in the sulfur-containing precursor is shown.

全文:

受限制的访问

作者简介

Lyudmila Belykh

Irkutsk State University

编辑信件的主要联系方式.
Email: belykh@chem.isu.ru
ORCID iD: 0000-0002-2113-0408
俄罗斯联邦, Irkutsk

Tatiana Kornaukhova

Irkutsk State University

Email: belykh@chem.isu.ru
ORCID iD: 0000-0002-9297-3525
俄罗斯联邦, Irkutsk

Natalia Skripov

Irkutsk State University

Email: belykh@chem.isu.ru
ORCID iD: 0000-0001-6332-0659
俄罗斯联邦, Irkutsk

Elena Milenkaya

Irkutsk State University

Email: belykh@chem.isu.ru
ORCID iD: 0000-0002-2538-8182
俄罗斯联邦, Irkutsk

Sergey Kolesnikov

Irkutsk National Research Technical University

Email: belykh@chem.isu.ru
俄罗斯联邦, Irkutsk

Fyodor Schmidt

Irkutsk State University

Email: belykh@chem.isu.ru
ORCID iD: 0000-0003-2942-7588
俄罗斯联邦, Irkutsk

参考

  1. Zhu W., Cheng Y., Wang C., Pinna N., Lu X. // Nanoscale. 2021. Vol. 13. P. 9112. doi: 10.1039/D1NR01070K
  2. Liu Y., McCue A.J., Li D. // ACS Catal. 2021. Vol. 11. N 15. P. 9102. doi: 10.1021/acscatal.1c01718
  3. Журавлев О.Е., Рассказова Н.Ю., Суратова Е.С., Карпенков А.Ю. // ЖОХ. 2023. Т. 93. № 2. С. 301. doi: 10.31857/S0044460X23020166; Zhuravlev O.E., Rasskazova N.Y., Suratova E.S., Karpenkov A.Yu. // Russ. J. Gen. Chem. 2023. Vol. 93. P. 352. doi: 10.1134/S1070363223020160
  4. Ajibade P.A., Nqombolo A. // Chalcogenide Lett. 2016. Vol. 13. N 9. P. 427.
  5. Radha B., Kulkarni G.U. // Adv. Funct. Mater. 2010. Vol. 20. N 6. P. 879. doi: 10.1002/adfm.200901766
  6. Wang Y., Xu K., Zhu Z., Guo W., Yu T., He M., Wei W., Yang T. // Chem. Commun. 2021. Vol. 57. P. 1368. doi: 10.1039/D0CC06693A
  7. Liu X., Huang Q., Wang J., Zhao L., Xu H., Xia Q., Li D., Qian L., Wang H., Zhang J. // Chinese Chem. Lett. 2021. Vol. 32. N 6. P. 2086. doi: 10.1016/j.cclet.2020.11.003
  8. Bachiller-Baeza B., Iglesias-Juez A., Castillejos-López E., Guerrero-Ruiz A., Michiel M.D., Fernández-García M., Rodríguez-Ramos I. // АCS Catal. 2015. Vol. 5. N 9. P. 5235. doi: 10.1021/acscatal.5b00896
  9. Albani D., Shahrokhi M., Chen Z., Mitchell S., Hauert R., López N., Pérez-Ramírez J. // Nat. Commun. 2018. Vol. 9. P. 2634. doi: 10.1038/s41467-018-05052-4
  10. McCue A.J., Guerrero-Ruiz A., Rodríguez-Ramos I., Anderson J.A. // J. Catal. 2016. Vol. 340. P. 10. doi: 10.1016/j.jcat.2016.05.002
  11. Zhao X., Zhou L., Zhang W., Hu C., Dai L., Ren L., Wu B., Fu G., Zheng N. // Chem. 2018. Vol. 4. N 5. P. 1080. doi: 10.1016/j.chempr.2018.02.011
  12. Wu Z.Y., Nan H., Shen S.C., Chen M.X., Liang H.W., Huang C.Q., Yao T., Chu S.Q., Li W.X., Yu S.H. // CCS Chem. 2022. Vol. 4. P. 3051. doi: 10.31635/ccschem.021.202101428
  13. Wang S., Jiang G., Yang Z., Mu L., Ji T., Lu X., Zhu J. // ACS Sustain. Chem. Eng. 2022. Vol. 10. N 41. P. 13750. doi: 10.1021/acssuschemeng.2c03906
  14. Yang T., Yang C., Le J., Yu Z., Bu L., Li L., Bai S., Shao Q., Hu Z., Pao C.W., Cheng J., Feng Y., Huang X. // Nano Res. 2022. Vol. 15. P. 1861. doi: 10.1007/s12274-021-3786-0
  15. Li Yu., Zheng S., He Yu., Yang S., Huang W.-H., Pao C.-W., Hu Z., Huan X. // Chem. Eng. J. 2024. Vol. 500. Art. 157297. doi: 10.1016/j.cej.2024.157297
  16. Zhang Y., Wang X., Ziyue Wang Z., Liu L., He X., Ji H. // Dalton Trans. 2024. Vol. 53. P. 18069. doi: 10.1039/D4DT02460E
  17. Bhatt R., Bhattacharya S., Basu R., Singh A., Deshpande U., Surger C., Basu S., Aswal D.K., Gupta S.K. // Thin Solid Films. 2013. Vol. 539. P. 41. doi 10.1016/ j.tsf.2013.04.143
  18. Wang W., Mao Q., Jiang S., Deng K., Yu H., Wang Z., Xu Y., Wang L., Wang H. // Appl. Catal. (B). 2024. Vol. 340. Art. 123194. doi: 10.1016/j.apcatb.2023.123194
  19. Belykh L.B., Skripov N.I., Sterenchuk T.P., Gvozdovskaya K.L., Sanzhieva S.B., Schmidt F.K. // J. Nanopart. Res. 2019. Vol. 21. 198. doi: 10.1007/s11051-019-4641-z
  20. Князева А.Н., Шугам Е.А., Школьникова Л.М. // ЖСХ. 1970. Т. 11. № 5. С. 938; Knyazeva A.N., Shugam E.A., Shkol’nikova L.M. // J. Struct. Chem. 1970. Vol. 11. P. 875. doi: 10.1007/BF00743406
  21. Миронова Л.В., Левковский Ю.С., Белых Л.Б., Лобза Г.В., Иванова Н.А., Ратовский Г.В., Дубинская Э.И., Шмидт Ф.К. // Коорд. хим. 1985. Т. 11. № 12. С. 1689.
  22. Беренблюм А.С. // ЖВХО. 1984. Т. 32. № 1. C. 82.
  23. Шмидт Ф.К., Белых Л.Б., Скрипов Н.И., Белоногова Л.Н., Уманец В.А., Рохин А.В. // Кинетика и катализ. 2007. Т. 48. № 5. С. 685; Shmidt F.K., Belykh L.B., Skripov N.I., Belonogova L.N., Umanets V.A., Rokhin A.V. // Kinet. Catal. 2007. Vol. 48. N. 5. P. 640. doi: 10.1134/S0023158407050072
  24. Белых Л.Б., Скрипов Н.И., Белоногова Л.Н., Рохин А.В., Шмидт Ф.К. // ЖОХ. 2009. Т. 79. № 1. С. 94; Belykh L.B., Skripov N.I., Belonogova L.N., Rokhin A.V., Shmidt F.K. // Russ. J. Gen. Chem. 2009. Vol. 79. P. 92. doi: 10.1134/S1070363209010149
  25. Watzky M.A., Finke R.G. // J. Am. Chem. Soc. 1997. Vol. 119. N 43. P. 10382. doi: 10.1021/ja9705102
  26. Aiken III J.D., Finke R.G. // J. Am. Chem. Soc. 1998. Vol. 120. P. 9545. doi: 10.1021/ja9719485
  27. Moreau L.M., Ha D.-H., Bealing C.R., Zhang H., Hennig R.G., Robinson R.D. // Nano Lett. 2012. Vol. 12. N 9. P. 4530. doi: 10.1021/nl301642g
  28. Gordon A.J., Ford R.A. Handbook of Practical Data, Techniques, and References. New York: Wiley, 1973. 560 p.
  29. Джемилев У.М., Поподько Н.Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. Алициклические соединения. М.: Химия, 1999. 648 c.

补充文件

附件文件
动作
1. JATS XML
2. Appendix
下载 (845KB)
3. Fig. 1. UV spectra of the Pd(asas)2-nS-H2 system at n = 0 (a), 0.25 (b), 0.5 (c) and 1. 0 (d) at different time intervals: (a), at the initial moment (1), after 6 min (2), 8 min (3), 17 min (4); (b), at the initial moment (1), after 40 min (2), 46 min (3), 52 min (4), 58 min (5); (c), at the initial moment (1), after 60 min (2), 80 min (3), 90 min (4), 100 min (5); (d), at the initial moment (1), after 102 min (2), 131 min (3), 152 min (4), 241 min (5) from the start of the reaction.

下载 (310KB)
4. Fig. 2. Kinetic curves of reduction of Pd(asas)2 by hydrogen in the presence of sulphur (a) and acetylacetone formation (b) at [Pd]:[S] = 1:0 (1), 1:0.25 (2), 1:0.5 (3), 1:1 (4). Conditions: 80°C, p (H2) = 2 atm, solvent - DMFA.

下载 (174KB)
5. Fig. 3. Light-field PEM images of samples isolated from the Pd(asas)2-nS-H2 system at [Pd]:[S] = 1:0.1 (a), 1:0.25 (b), 1:0.5 (c), 1:1 (d).

下载 (305KB)
6. Fig. 4. High-resolution SEM images of Pd-S-containing samples isolated from the Pd(asas)2-nS-H2 system at [Pd]:[S] = 1:0.1 (a), 1:0.25 (b, different sites), 1:0.5 (c), 1:1 (d).

下载 (376KB)
7. Fig. 5. X-ray radiographs of sample 2 ([Pd]:[S] = 1:0.25) before (a) and after temperature control in argon at 400°C (b).

下载 (135KB)
8. Fig. 6. X-ray radiographs of sample 3 ([Pd]:[S] = 1:0.5) before (a) and after temperature control in argon at 400°C (b).

下载 (121KB)
9. Fig. 7. X-ray radiographs of sample 4 (Pd:S = 1:1) before (a) and after thermostatisation in argon at 400°C (b).

下载 (144KB)

版权所有 © Russian Academy of Sciences, 2025