Effect of Synthesis Conditions on the Composition of Palladium Sulfides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation process of Pd-S-containing nanoparticles from Pd(acac)2 and orthorhombic sulfur in hydrogen under mild conditions at different Pd:S ratios was studied using a combination of UV spectroscopy, high-resolution transmission electron microscopy, electron diffraction and X-ray powder diffraction methods, nanoparticles’ average size, phase and elemental composition, morphology and microstructure were determined. The transition of solid solutions of sulfur in palladium or in palladium sulfide into palladium sulfides enriched in sulfur after high-temperature treatment of Pd–S-containing samples was established. The possibility of obtaining phase-pure palladium sulfides Pd4S, PdS without loss of sulfur in the sulfur-containing precursor is shown.

Full Text

Restricted Access

About the authors

Lyudmila B. Belykh

Irkutsk State University

Author for correspondence.
Email: belykh@chem.isu.ru
ORCID iD: 0000-0002-2113-0408
Russian Federation, Irkutsk

Tatiana A. Kornaukhova

Irkutsk State University

Email: belykh@chem.isu.ru
ORCID iD: 0000-0002-9297-3525
Russian Federation, Irkutsk

Natalia I. Skripov

Irkutsk State University

Email: belykh@chem.isu.ru
ORCID iD: 0000-0001-6332-0659
Russian Federation, Irkutsk

Elena A. Milenkaya

Irkutsk State University

Email: belykh@chem.isu.ru
ORCID iD: 0000-0002-2538-8182
Russian Federation, Irkutsk

Sergey S. Kolesnikov

Irkutsk National Research Technical University

Email: belykh@chem.isu.ru
Russian Federation, Irkutsk

Fyodor K. Schmidt

Irkutsk State University

Email: belykh@chem.isu.ru
ORCID iD: 0000-0003-2942-7588
Russian Federation, Irkutsk

References

  1. Zhu W., Cheng Y., Wang C., Pinna N., Lu X. // Nanoscale. 2021. Vol. 13. P. 9112. doi: 10.1039/D1NR01070K
  2. Liu Y., McCue A.J., Li D. // ACS Catal. 2021. Vol. 11. N 15. P. 9102. doi: 10.1021/acscatal.1c01718
  3. Журавлев О.Е., Рассказова Н.Ю., Суратова Е.С., Карпенков А.Ю. // ЖОХ. 2023. Т. 93. № 2. С. 301. doi: 10.31857/S0044460X23020166; Zhuravlev O.E., Rasskazova N.Y., Suratova E.S., Karpenkov A.Yu. // Russ. J. Gen. Chem. 2023. Vol. 93. P. 352. doi: 10.1134/S1070363223020160
  4. Ajibade P.A., Nqombolo A. // Chalcogenide Lett. 2016. Vol. 13. N 9. P. 427.
  5. Radha B., Kulkarni G.U. // Adv. Funct. Mater. 2010. Vol. 20. N 6. P. 879. doi: 10.1002/adfm.200901766
  6. Wang Y., Xu K., Zhu Z., Guo W., Yu T., He M., Wei W., Yang T. // Chem. Commun. 2021. Vol. 57. P. 1368. doi: 10.1039/D0CC06693A
  7. Liu X., Huang Q., Wang J., Zhao L., Xu H., Xia Q., Li D., Qian L., Wang H., Zhang J. // Chinese Chem. Lett. 2021. Vol. 32. N 6. P. 2086. doi: 10.1016/j.cclet.2020.11.003
  8. Bachiller-Baeza B., Iglesias-Juez A., Castillejos-López E., Guerrero-Ruiz A., Michiel M.D., Fernández-García M., Rodríguez-Ramos I. // АCS Catal. 2015. Vol. 5. N 9. P. 5235. doi: 10.1021/acscatal.5b00896
  9. Albani D., Shahrokhi M., Chen Z., Mitchell S., Hauert R., López N., Pérez-Ramírez J. // Nat. Commun. 2018. Vol. 9. P. 2634. doi: 10.1038/s41467-018-05052-4
  10. McCue A.J., Guerrero-Ruiz A., Rodríguez-Ramos I., Anderson J.A. // J. Catal. 2016. Vol. 340. P. 10. doi: 10.1016/j.jcat.2016.05.002
  11. Zhao X., Zhou L., Zhang W., Hu C., Dai L., Ren L., Wu B., Fu G., Zheng N. // Chem. 2018. Vol. 4. N 5. P. 1080. doi: 10.1016/j.chempr.2018.02.011
  12. Wu Z.Y., Nan H., Shen S.C., Chen M.X., Liang H.W., Huang C.Q., Yao T., Chu S.Q., Li W.X., Yu S.H. // CCS Chem. 2022. Vol. 4. P. 3051. doi: 10.31635/ccschem.021.202101428
  13. Wang S., Jiang G., Yang Z., Mu L., Ji T., Lu X., Zhu J. // ACS Sustain. Chem. Eng. 2022. Vol. 10. N 41. P. 13750. doi: 10.1021/acssuschemeng.2c03906
  14. Yang T., Yang C., Le J., Yu Z., Bu L., Li L., Bai S., Shao Q., Hu Z., Pao C.W., Cheng J., Feng Y., Huang X. // Nano Res. 2022. Vol. 15. P. 1861. doi: 10.1007/s12274-021-3786-0
  15. Li Yu., Zheng S., He Yu., Yang S., Huang W.-H., Pao C.-W., Hu Z., Huan X. // Chem. Eng. J. 2024. Vol. 500. Art. 157297. doi: 10.1016/j.cej.2024.157297
  16. Zhang Y., Wang X., Ziyue Wang Z., Liu L., He X., Ji H. // Dalton Trans. 2024. Vol. 53. P. 18069. doi: 10.1039/D4DT02460E
  17. Bhatt R., Bhattacharya S., Basu R., Singh A., Deshpande U., Surger C., Basu S., Aswal D.K., Gupta S.K. // Thin Solid Films. 2013. Vol. 539. P. 41. doi 10.1016/ j.tsf.2013.04.143
  18. Wang W., Mao Q., Jiang S., Deng K., Yu H., Wang Z., Xu Y., Wang L., Wang H. // Appl. Catal. (B). 2024. Vol. 340. Art. 123194. doi: 10.1016/j.apcatb.2023.123194
  19. Belykh L.B., Skripov N.I., Sterenchuk T.P., Gvozdovskaya K.L., Sanzhieva S.B., Schmidt F.K. // J. Nanopart. Res. 2019. Vol. 21. 198. doi: 10.1007/s11051-019-4641-z
  20. Князева А.Н., Шугам Е.А., Школьникова Л.М. // ЖСХ. 1970. Т. 11. № 5. С. 938; Knyazeva A.N., Shugam E.A., Shkol’nikova L.M. // J. Struct. Chem. 1970. Vol. 11. P. 875. doi: 10.1007/BF00743406
  21. Миронова Л.В., Левковский Ю.С., Белых Л.Б., Лобза Г.В., Иванова Н.А., Ратовский Г.В., Дубинская Э.И., Шмидт Ф.К. // Коорд. хим. 1985. Т. 11. № 12. С. 1689.
  22. Беренблюм А.С. // ЖВХО. 1984. Т. 32. № 1. C. 82.
  23. Шмидт Ф.К., Белых Л.Б., Скрипов Н.И., Белоногова Л.Н., Уманец В.А., Рохин А.В. // Кинетика и катализ. 2007. Т. 48. № 5. С. 685; Shmidt F.K., Belykh L.B., Skripov N.I., Belonogova L.N., Umanets V.A., Rokhin A.V. // Kinet. Catal. 2007. Vol. 48. N. 5. P. 640. doi: 10.1134/S0023158407050072
  24. Белых Л.Б., Скрипов Н.И., Белоногова Л.Н., Рохин А.В., Шмидт Ф.К. // ЖОХ. 2009. Т. 79. № 1. С. 94; Belykh L.B., Skripov N.I., Belonogova L.N., Rokhin A.V., Shmidt F.K. // Russ. J. Gen. Chem. 2009. Vol. 79. P. 92. doi: 10.1134/S1070363209010149
  25. Watzky M.A., Finke R.G. // J. Am. Chem. Soc. 1997. Vol. 119. N 43. P. 10382. doi: 10.1021/ja9705102
  26. Aiken III J.D., Finke R.G. // J. Am. Chem. Soc. 1998. Vol. 120. P. 9545. doi: 10.1021/ja9719485
  27. Moreau L.M., Ha D.-H., Bealing C.R., Zhang H., Hennig R.G., Robinson R.D. // Nano Lett. 2012. Vol. 12. N 9. P. 4530. doi: 10.1021/nl301642g
  28. Gordon A.J., Ford R.A. Handbook of Practical Data, Techniques, and References. New York: Wiley, 1973. 560 p.
  29. Джемилев У.М., Поподько Н.Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. Алициклические соединения. М.: Химия, 1999. 648 c.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (845KB)
3. Fig. 1. UV spectra of the Pd(asas)2-nS-H2 system at n = 0 (a), 0.25 (b), 0.5 (c) and 1. 0 (d) at different time intervals: (a), at the initial moment (1), after 6 min (2), 8 min (3), 17 min (4); (b), at the initial moment (1), after 40 min (2), 46 min (3), 52 min (4), 58 min (5); (c), at the initial moment (1), after 60 min (2), 80 min (3), 90 min (4), 100 min (5); (d), at the initial moment (1), after 102 min (2), 131 min (3), 152 min (4), 241 min (5) from the start of the reaction.

Download (310KB)
4. Fig. 2. Kinetic curves of reduction of Pd(asas)2 by hydrogen in the presence of sulphur (a) and acetylacetone formation (b) at [Pd]:[S] = 1:0 (1), 1:0.25 (2), 1:0.5 (3), 1:1 (4). Conditions: 80°C, p (H2) = 2 atm, solvent - DMFA.

Download (174KB)
5. Fig. 3. Light-field PEM images of samples isolated from the Pd(asas)2-nS-H2 system at [Pd]:[S] = 1:0.1 (a), 1:0.25 (b), 1:0.5 (c), 1:1 (d).

Download (305KB)
6. Fig. 4. High-resolution SEM images of Pd-S-containing samples isolated from the Pd(asas)2-nS-H2 system at [Pd]:[S] = 1:0.1 (a), 1:0.25 (b, different sites), 1:0.5 (c), 1:1 (d).

Download (376KB)
7. Fig. 5. X-ray radiographs of sample 2 ([Pd]:[S] = 1:0.25) before (a) and after temperature control in argon at 400°C (b).

Download (135KB)
8. Fig. 6. X-ray radiographs of sample 3 ([Pd]:[S] = 1:0.5) before (a) and after temperature control in argon at 400°C (b).

Download (121KB)
9. Fig. 7. X-ray radiographs of sample 4 (Pd:S = 1:1) before (a) and after thermostatisation in argon at 400°C (b).

Download (144KB)

Copyright (c) 2025 Russian Academy of Sciences