LaFeO3 nanofibers as materials for gas sensors
- Autores: Platonov V.B.1, Malinin N.М.1, Sapkov I.V.1, Rumyantseva M.N.1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Volume 94, Nº 11-12 (2024)
- Páginas: 1121-1132
- Seção: Articles
- URL: https://kazanmedjournal.ru/0044-460X/article/view/676665
- DOI: https://doi.org/10.31857/S0044460X24110079
- EDN: https://elibrary.ru/QXNUOP
- ID: 676665
Citar
Resumo
LaFeO3 nanofibers were prepared by electrospinning from polymer precursor-filled solutions and characterized by X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption, infrared spectroscopy, and X-ray photoelectron spectroscopy. The gas-sensing properties of the materials were studied in detecting CO, NH3, acetone and methanol. The synthesized LaFeO3 fibers exhibit a high sensory response to volatile organic compounds.
Palavras-chave
Texto integral

Sobre autores
V. Platonov
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: platonovvb@my.msu.ru
ORCID ID: 0000-0003-2151-9592
Rússia, 119991, Moscow
N. Malinin
Lomonosov Moscow State University
Email: platonovvb@my.msu.ru
ORCID ID: 0009-0008-2685-7826
Rússia, 119991, Moscow
I. Sapkov
Lomonosov Moscow State University
Email: platonovvb@my.msu.ru
ORCID ID: 0009-0001-6621-7881
Rússia, 119991, Moscow
M. Rumyantseva
Lomonosov Moscow State University
Email: platonovvb@my.msu.ru
ORCID ID: 0000-0002-3354-0885
Rússia, 119991, Moscow
Bibliografia
- Galstyan V., Moumen A., Kumarage G.W.C., Comini E. // Sensors and Actuators (B). 2022. Vol. 357. P. 131466. doi: 10.1016/j.snb.2022.131466
- Staerz A., Weimar U., Barsan N. // Sensors and Actuators (B). 2022. Vol. 358. P. 131531. doi 10.1016/ j.snb.2022.131531
- Yamazoe N., Shimanoe K. // Woodhead Publishing Series in Electronic and Optical Materials. 2020. P. 3. doi: 10.1016/B978-0-08-102559-8.00001-X
- Doshi J., Reneker D. // J. Electrostat. 1995. Vol. 35. P. 151. doi: 10.1016/0304-3886(95)00041-8
- Li H., Chu Sh., Ma Q., Li H., Che Q., Wang J., Wang G., Yang P. // ACS Appl. Mater. Interfaces. 2019. Vol. 11. P. 31551. doi: 10.1021/acsami.9b10410
- Huang B., Zhang Zh., Zhao Ch., Cairang L., Bai J., Zhang Y., Mu X., Du J., Wang H., Pan X., Zhou J., Xie E. // Sensors and Actuators (B). 2018. Vol. 255. P. 2248. doi: 10.1016/j.snb.2017.09.022
- Le Kh., Toperczer F., Ünlü F., Paramasivam G., Mathies F., Nandayapa E., List-Kratochvil E.J.W., Fischer Th., Lindfors K., Mathur S. // Adv. Eng. Mater. 2023. P. 2201651. doi: 10.1002/adem.202201651
- Ichangi A., Shvartsman V.V., Lupascu D.C., Lê Kh., Grosch M., Schmidt-Verma A.K., Bohr Ch., Verma A., Fischer T., Mathur S. // J. Eur. Ceram. Soc. 2021. Vol. 41. P. 7662. doi: 10.1016/j.jeurceramsoc.2021.08.010
- Bohr Ch., Pfeiffer M., Öz S., Toperczer F., Lepcha A., Fischer T., Schütz M., Lindfors K., Mathur S. // ACS Appl. Mater. Interfaces. 2019. Vol. 11. P. 25163. doi: 10.1021/acsami.9b05700
- Samantaa P., Bagchi S., Mishra S. // Mater. Today. Proceed. 2015. Vol. 2. P. 4499. doi: 10.1016/j.matpr.2015.10.061
- Kima J.-H., Mirzaeib A., Kimb H.W., Kim S.S. // Sensors and Actuators (B). 2019. Vol. 284. P. 628. doi 10.1016/ j.snb.2018.12.120
- Laia T.-Y., Fanga T.-H., Hsiaob Y.-J., Chan C.-A. // Vacuum. 2019. Vol. 166. P. 155. doi 10.1016/ j.vacuum.2019.04.061
- Fan H., Zhang T., Xu X., Lu N. // Sensors and Actuators (B). 2011. Vol. 153. P. 83. doi: 10.1016/j.snb.2010.10.014
- Fang F., Feng N., Wang L., Meng J., Liu G., Zhao P., Gao P., Ding J., Wan H., Guan G. // Appl. Catal. (B). 2010. Vol. 216. P. 184. doi: 10.1016/j.apcatb.2018.05.030
- Lee W.-Y., Joong H. Y., Yoon J.-W. // J. Alloys Compd. 2014. Vol. 583. P. 320. doi: 10.1016/j.jallcom.2013.08.191
- Alharbi A., Sackmann A., Weimar U., Barsan N. // Sensors and Actuators (B). 2020. Vol. 303. P. 127204. doi: 10.1016/j.snb.2019.127204
- Hu J., Chen X., Zhang Y. // Sensors and Actuators (B). 2021. Vol. 349. P. 130738. doi: 10.1016/j.snb.2021.130738
- Hübner M., Simion C.E., Tomescu-Stănoiu A., Pokhrel S., Barsan N., Weimar U. // Sensors and Actuators (B). 2011. Vol. 153. P. 347. doi: 10.1016/j.snb.2010.10.046
- Thiruppathi K. P., Nataraj D. // Mater. Adv. 2020. Vol. 1. P. 2971. doi: 10.1039/D0MA00602E
- Arshad M.F., Kasmi A. El, Waqas M., Tian Z.-Y. //Appl. Energy Combust. Sci. 2021. Vol. 5. P. 100021. doi: 10.1016/j.jaecs.2020.100021
- Dean J.A., Lange N.A. Lange’s Handbook of Chemistry. McGraw-Hill, 1992. 1466 p.
- Wang X., Qin H., Pei J., Chen Y., Li L., Xie J., Hu J. // J. Rare Earths. 2016. Vol. 34. N 7. P. 704. doi: 10.1016/S1002-0721(16)60082-0
- Ali F.A., Nayak R., Achary P.G.R., Mishra D.K., Sahoo S.K., Singh U.P., Nanda B. // Mater. Today Proceed. 2023. Vol. 74. P. 993. doi: 10.1016/j.matpr.2022.11.351
- Xiao H., Xue C., Song P., Li J., Wang Q. // Appl. Surf. Sci. 2015. Vol. 337. P. 65. doi: 10.1016/j.apsusc.2015.02.064
- Dai Zh., Lee Ch.-S., Kim B.-Y., Kwak Ch.-H., Yoon J.-W., Jeong H.-M., Lee J.-H. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. N 18. P. 16217. doi: 10.1021/am504386q
- Koli P.B., Kapadnis K.H., Deshpande U.G., More B.P., Tupe U.J. // Mat. Sci. Res. India. 2020. Vol. 17. N 1. P. 70. doi: 10.13005/msri/170110
- Zhang Y., Duan Z., Zou H., Ma M. // Mater. Lett. 2018. Vol. 215. P. 58. doi: 10.1016/j.matlet.2017.12.062
- Shingange K., Swart H.C., Mhlongo G.H. // Physica (B). 2020. Vol. 578. P. 411883. doi 10.1016/ j.physb.2019.411883
- Zhang Z., Ji H.M., Gu Y.F., Chen X.D., Yu D.Y. // Key Eng. Mater. 2007. Vol. 336–338. P. 684. doi: 10.4028/ href='www.scientific.net/KEM.336-338.684' target='_blank'>www.scientific.net/KEM.336-338.684
- Cyza A., Cieniek L., Moskalewicz T., Maziarz W., Kusinski J., Kowalski K., Kopia A. // Catalysts. 2020. Vol. 10. N 9. P. 954. doi: 10.3390/catal10090954
- Chen Y., Qin H., Wang X., Li L., Hu J. // Sensors and Actuators (B). 2016. Vol. 235. P. 56. doi 10.1016/ j.snb.2016.05.059
Arquivos suplementares
