Нановолокна LaFeO3 как материалы для газовых сенсоров

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Нановолокна LaFeO3 получены методом электроспиннинга из полимерных прекурсор-наполненных растворов, охарактеризованы методами рентгеновской дифракции, сканирующей электронной микроскопии, низкотемпературной адсорбции азота, инфракрасной спектроскопией и рентгеновской фотоэлектронной спектроскопией. Исследованы газочувствительные свойства материалов при детектировании CO, NH3, ацетона и метанола. Синтезированные волокна LaFeO3 проявляют высокий сенсорный отклик по отношению к летучим органическим соединениям.

Полный текст

Доступ закрыт

Об авторах

В. Б. Платонов

Московский государственный университет имени М. В. Ломоносова

Автор, ответственный за переписку.
Email: platonovvb@my.msu.ru
ORCID iD: 0000-0003-2151-9592
Россия, 119991, Москва

Н. М. Малинин

Московский государственный университет имени М. В. Ломоносова

Email: platonovvb@my.msu.ru
ORCID iD: 0009-0008-2685-7826
Россия, 119991, Москва

И. В. Сапков

Московский государственный университет имени М. В. Ломоносова

Email: platonovvb@my.msu.ru
ORCID iD: 0009-0001-6621-7881
Россия, 119991, Москва

М. Н. Румянцева

Московский государственный университет имени М. В. Ломоносова

Email: platonovvb@my.msu.ru
ORCID iD: 0000-0002-3354-0885
Россия, 119991, Москва

Список литературы

  1. Galstyan V., Moumen A., Kumarage G.W.C., Comini E. // Sensors and Actuators (B). 2022. Vol. 357. P. 131466. doi: 10.1016/j.snb.2022.131466
  2. Staerz A., Weimar U., Barsan N. // Sensors and Actuators (B). 2022. Vol. 358. P. 131531. doi 10.1016/ j.snb.2022.131531
  3. Yamazoe N., Shimanoe K. // Woodhead Publishing Series in Electronic and Optical Materials. 2020. P. 3. doi: 10.1016/B978-0-08-102559-8.00001-X
  4. Doshi J., Reneker D. // J. Electrostat. 1995. Vol. 35. P. 151. doi: 10.1016/0304-3886(95)00041-8
  5. Li H., Chu Sh., Ma Q., Li H., Che Q., Wang J., Wang G., Yang P. // ACS Appl. Mater. Interfaces. 2019. Vol. 11. P. 31551. doi: 10.1021/acsami.9b10410
  6. Huang B., Zhang Zh., Zhao Ch., Cairang L., Bai J., Zhang Y., Mu X., Du J., Wang H., Pan X., Zhou J., Xie E. // Sensors and Actuators (B). 2018. Vol. 255. P. 2248. doi: 10.1016/j.snb.2017.09.022
  7. Le Kh., Toperczer F., Ünlü F., Paramasivam G., Mathies F., Nandayapa E., List-Kratochvil E.J.W., Fischer Th., Lindfors K., Mathur S. // Adv. Eng. Mater. 2023. P. 2201651. doi: 10.1002/adem.202201651
  8. Ichangi A., Shvartsman V.V., Lupascu D.C., Lê Kh., Grosch M., Schmidt-Verma A.K., Bohr Ch., Verma A., Fischer T., Mathur S. // J. Eur. Ceram. Soc. 2021. Vol. 41. P. 7662. doi: 10.1016/j.jeurceramsoc.2021.08.010
  9. Bohr Ch., Pfeiffer M., Öz S., Toperczer F., Lepcha A., Fischer T., Schütz M., Lindfors K., Mathur S. // ACS Appl. Mater. Interfaces. 2019. Vol. 11. P. 25163. doi: 10.1021/acsami.9b05700
  10. Samantaa P., Bagchi S., Mishra S. // Mater. Today. Proceed. 2015. Vol. 2. P. 4499. doi: 10.1016/j.matpr.2015.10.061
  11. Kima J.-H., Mirzaeib A., Kimb H.W., Kim S.S. // Sensors and Actuators (B). 2019. Vol. 284. P. 628. doi 10.1016/ j.snb.2018.12.120
  12. Laia T.-Y., Fanga T.-H., Hsiaob Y.-J., Chan C.-A. // Vacuum. 2019. Vol. 166. P. 155. doi 10.1016/ j.vacuum.2019.04.061
  13. Fan H., Zhang T., Xu X., Lu N. // Sensors and Actuators (B). 2011. Vol. 153. P. 83. doi: 10.1016/j.snb.2010.10.014
  14. Fang F., Feng N., Wang L., Meng J., Liu G., Zhao P., Gao P., Ding J., Wan H., Guan G. // Appl. Catal. (B). 2010. Vol. 216. P. 184. doi: 10.1016/j.apcatb.2018.05.030
  15. Lee W.-Y., Joong H. Y., Yoon J.-W. // J. Alloys Compd. 2014. Vol. 583. P. 320. doi: 10.1016/j.jallcom.2013.08.191
  16. Alharbi A., Sackmann A., Weimar U., Barsan N. // Sensors and Actuators (B). 2020. Vol. 303. P. 127204. doi: 10.1016/j.snb.2019.127204
  17. Hu J., Chen X., Zhang Y. // Sensors and Actuators (B). 2021. Vol. 349. P. 130738. doi: 10.1016/j.snb.2021.130738
  18. Hübner M., Simion C.E., Tomescu-Stănoiu A., Pokhrel S., Barsan N., Weimar U. // Sensors and Actuators (B). 2011. Vol. 153. P. 347. doi: 10.1016/j.snb.2010.10.046
  19. Thiruppathi K. P., Nataraj D. // Mater. Adv. 2020. Vol. 1. P. 2971. doi: 10.1039/D0MA00602E
  20. Arshad M.F., Kasmi A. El, Waqas M., Tian Z.-Y. //Appl. Energy Combust. Sci. 2021. Vol. 5. P. 100021. doi: 10.1016/j.jaecs.2020.100021
  21. Dean J.A., Lange N.A. Lange’s Handbook of Chemistry. McGraw-Hill, 1992. 1466 p.
  22. Wang X., Qin H., Pei J., Chen Y., Li L., Xie J., Hu J. // J. Rare Earths. 2016. Vol. 34. N 7. P. 704. doi: 10.1016/S1002-0721(16)60082-0
  23. Ali F.A., Nayak R., Achary P.G.R., Mishra D.K., Sahoo S.K., Singh U.P., Nanda B. // Mater. Today Proceed. 2023. Vol. 74. P. 993. doi: 10.1016/j.matpr.2022.11.351
  24. Xiao H., Xue C., Song P., Li J., Wang Q. // Appl. Surf. Sci. 2015. Vol. 337. P. 65. doi: 10.1016/j.apsusc.2015.02.064
  25. Dai Zh., Lee Ch.-S., Kim B.-Y., Kwak Ch.-H., Yoon J.-W., Jeong H.-M., Lee J.-H. // ACS Appl. Mater. Interfaces. 2014. Vol. 6. N 18. P. 16217. doi: 10.1021/am504386q
  26. Koli P.B., Kapadnis K.H., Deshpande U.G., More B.P., Tupe U.J. // Mat. Sci. Res. India. 2020. Vol. 17. N 1. P. 70. doi: 10.13005/msri/170110
  27. Zhang Y., Duan Z., Zou H., Ma M. // Mater. Lett. 2018. Vol. 215. P. 58. doi: 10.1016/j.matlet.2017.12.062
  28. Shingange K., Swart H.C., Mhlongo G.H. // Physica (B). 2020. Vol. 578. P. 411883. doi 10.1016/ j.physb.2019.411883
  29. Zhang Z., Ji H.M., Gu Y.F., Chen X.D., Yu D.Y. // Key Eng. Mater. 2007. Vol. 336–338. P. 684. doi: 10.4028/ href='www.scientific.net/KEM.336-338.684' target='_blank'>www.scientific.net/KEM.336-338.684
  30. Cyza A., Cieniek L., Moskalewicz T., Maziarz W., Kusinski J., Kowalski K., Kopia A. // Catalysts. 2020. Vol. 10. N 9. P. 954. doi: 10.3390/catal10090954
  31. Chen Y., Qin H., Wang X., Li L., Hu J. // Sensors and Actuators (B). 2016. Vol. 235. P. 56. doi 10.1016/ j.snb.2016.05.059

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Рентгенограммы полученных нановолокон LaFeO3.

Скачать (200KB)
3. Рис. 2. Микрофотографии полученных образцов LaFeO3.

Скачать (398KB)
4. Рис. 3. ИК спектры синтезированных образцов LaFeO3.

Скачать (230KB)
5. Рис. 4. РФЭ спектры синтезированных нановолокон LaFeO3.

Скачать (476KB)
6. Рис. 5. Температурные зависимости сенсорного сигнала LaFeO3 при детектировании (а) NH3 (20 млн–1), (б) СО (20 млн–1), (в) ацетона (20 млн–1), (г) метанола (20 млн–1).

Скачать (233KB)

© Российская академия наук, 2024