Сукцинат меди(II): электрохимический синтез, исследование и применение в качестве прекурсора микроразмерных волокон оксида меди(II)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом электрохимического синтеза в средах различного состава получено координационное соединение меди(II) с янтарной кислотой. Образцы охарактеризованы методами количественного анализа, ЭПР и ИК спектроскопии, а также синхронного термического анализа. Осуществлен квантово-химический расчет колебательных частот сукцината меди(II) методом DFT, на основании которого проведена интерпретация экспериментальных ИК спектров. Термическим разложением синтезированных образцов получены микроразмерные волокна оксида меди(II). Показано, что для формирования умеренно агрегированных частиц с выраженной нитевидной морфологией оптимальным является использование системы растворителей вода–диметилсульфоксид с объемным соотношением компонентов 1:1.

Полный текст

Доступ закрыт

Об авторах

Елена Олеговна Андрийченко

Кубанский государственный университет

Автор, ответственный за переписку.
Email: leka91@mail.ru
ORCID iD: 0000-0002-2324-8987
Россия, Краснодар

Валерий Игоревич Зеленов

Кубанский государственный университет

Email: leka91@mail.ru
ORCID iD: 0000-0003-3031-3844
Россия, Краснодар

Александр Валерьевич Беспалов

Кубанский государственный университет

Email: leka91@mail.ru
ORCID iD: 0000-0002-9829-9674
Россия, Краснодар

Валентина Евгеньевна Бовыка

Кубанский государственный университет

Email: leka91@mail.ru
ORCID iD: 0000-0001-9419-0818
Россия, Краснодар

Е. К. Панина

Кубанский государственный университет

Email: leka91@mail.ru
Россия, Краснодар

Виталий Анатольевич Волынкин

Кубанский государственный университет

Email: leka91@mail.ru
ORCID iD: 0000-0002-3352-9862
Россия, Краснодар

Николай Николаевич Буков

Кубанский государственный университет

Email: leka91@mail.ru
ORCID iD: 0000-0001-8559-110X
Россия, Краснодар

Список литературы

  1. Jia S., Wang Y., Liu X., Zhao S., Zhao W., Huang Y., Li Z., Lin Z. // Nano Energy. 2019. Vol. 59. P. 229. doi: 10.1016/j.nanoen.2019.01.081
  2. Wan M., Jin D., Feng R., Si L., Gao M., Yue L. // Inorg. Chem. Commun. 2011. Vol. 14. P. 38. doi 10.1016/ j.inoche.2010.09.025
  3. Yeoh J.S., Armer C.F., Lowe A. // Mater. Today Energy. 2018. Vol. 9. P. 198. doi: 10.1016/J.MTENER.2018.05.010
  4. Hameed M.U., Khan Y., Ali S., Wu Z., Dar S.U., Song H., Ahmad A., Chen Y. // Ceram. Int. 2017. Vol. 43. N 1(A). P. 741. doi: 10.1016/j.ceramint.2016.10.003
  5. Feng L., Xuan Zh., Bai Y., Zhao H., Li L., Chen Y., Yang X., Su Ch., Guo J., Chen X. // J. Alloys Compd. 2014. Vol. 600. P. 162. doi: 10.1016/j.jallcom.2014.02.132
  6. Anu Prathap M.U., Kaur B., Srivastava R. // J. Colloid Interface Sci. 2012. Vol. 370. P. 144. doi 10.1016/ j.jcis.2011.12.074
  7. Siddiqui H., Qureshi M.S., Haque F.Z. // Optik. 2016. Vol. 127. P. 2740. doi: 10.1016/j.ijleo.2015.11.220
  8. Rao M.P., Ponnusamy V.K., Wu J.J., Asiri A.M., Anandan S. // J. Environ. Chem. Eng. 2018. Vol. 6. P. 6059. doi: 10.1016/j.jece.2018.09.041
  9. Андрийченко Е.О., Зеленов В.И., Бовыка В.Е., Буков Н.Н. // ЖОХ. 2021. Т. 91. № 4. С. 638. doi: 10.31857/S0044460X2104020X; Andriychenko E.O., Zelenov V.I., Bovyka V.E., Bukov N.N. // Russ. J. Gen. Chem. 2021. Vol. 91. N 4. P. 707. doi: 10.1134/S1070363221040204
  10. Bhosale M.A., Karekar S.C., Bhanage B.M. // ChemistrySelect. 2016. Vol. 1. N 19. P. 6297. doi: 10.1002/slct.201601484
  11. Ganguly A., Ahmad T., Ganguli A.K. // Dalton Trans. 2009. Vol. 18. P. 3536. doi: 10.1039/B820778J
  12. Das S., Srivastava V.Ch. // Mater. Lett. 2015. Vol. 150. P. 130. doi: 10.1016/j.matlet.2015.03.018
  13. Rodríguez A., García-Vázquez J.A. // Coord. Chem. Rev. 2015. Vol. 303. P. 42. doi: 10.1016/j.ccr.2015.05.006
  14. Андрийченко Е.О., Зеленов В.И., Беспалов А.В., Бовыка В.Е., Буков Н.Н. // ЖОХ. 2021. Т. 91. № 9. С. 1416. doi: 10.31857/S0044460X21090134; Andriychenko E.O., Zelenov V.I., Bespalov A.V., Bovyka V.E., Bukov N.N. // Russ. J. Gen. Chem. 2021. Vol. 91. N 9. P. 1697. doi: 10.1134/S1070363221090139
  15. Cаргисян С.А., Саргсян Т.С., Агаджанян И.Г., Хизанцян К.М., Саркисян А.С., Маргарян К.С. // ЖОХ. 2020. Т. 90. Вып. 6. С. 906; Sargsyan S.H., Sargsyan T.S., Agadjanyan I.G., Khizantsyan K.M., Sargsyan A.S., Margaryan K.S. // Russ. J. Gen. Chem. 2020. Vol. 90. N 6. P. 906. doi: 10.31857/S0044460X20060108
  16. Ghoshal D., Ghosh A.K., Mostafa G., Ribas J., Chaudhuri N.R. // Inorg. Chim. Acta. 2007. Vol. 360. P. 1771. doi: 10.1016/j.ica.2006.08.054
  17. Kawata S., Kitagawa S., Machida H., Nakamoto T., Kondo M., Katada M., Kikuchi K., Ikemoto I. // Inorg. Chim. Acta. 1995. Vol. 229. P. 211. doi: 10.1016/0020-1693(94)04247-S
  18. Ghoshal D., Maji T.K., Mostafa G., Sain S., Lu T.-H., Ribas J., Zangrando E., Chaudhuri N.R. // Dalton Trans. 2004. Vol. 11. P. 1687. doi: 10.1039/b401738b
  19. Kawata S., Kitagawa S., Enomoto M., Kumagai H., Katada M. // Inorg. Chim. Acta. 1998. P. 80. doi: 10.1016/S0020-1693(98)00223-0
  20. González Garmendia M.J., San Nacianceno V., Seco J.M., Zúñiga F.J. // Acta Crystallogr. (C). 2009. Vol. 65. P. m436. doi: 10.1107/S0108270109040566
  21. O’Connor B.H., Maslen E.N. // Acta Crystallogr. 1966. Vol. 20. P. 824. doi: 10.1107/S0365110X66001932
  22. Rastsvetaeva R.K., Pushcharovsky D.Yu., Furmanova N.G. // Z. Kristallogr. Cryst. Mater. 1996. Vol. 211. P. 808. doi: 10.1524/zkri.1996.211.11.808
  23. Asai O., Kishita M., Kubo M. // J. Phys. Chem. 1959. Vol. 63. N 1. P. 96. doi: 10.1021/j150571a024
  24. Jasien P.G., Dhar S.K. // J. Inorg. Nucl. Chem. 1980. Vol. 42. N 6. P. 924. doi: 10.1016/0022-1902(80)80471-4
  25. Ganguly A., Ahmad T., Ganguli A.K. // Dalton Trans. 2009. P. 3536. doi: 10.1039/b820778j
  26. Djeghri A., Balegroune F., Guehria-Laidoudi A., Roisnel T. // Z. Kristallogr. NCS. 2004. Vol. 219. P. 471. doi: 10.1524/ncrs.2004.219.14.503
  27. Binitha M.P., Pradyumnan P.P. // Bull. Mater. Sci. 2017. Vol. 40. N 5. P. 1007. doi: 10.1007/s12034-017-1459-0
  28. Kozlevčar B., Leban I., Petrič M., Petriček S., Roubeau O., Reedijk J., Šegedin P. // Inorg. Chim. Acta. 2004. Vol. 357. P. 4220. doi: 10.1016/j.ica.2004.06.012
  29. Harish S.P., Sobhanadri J. // Inorg. Chim. Acta. 1985. Vol. 108. P. 147. doi: 10.1016/S0020-1693(00)84533-8
  30. Shee N.K., Verma R., Kumar D., Datta D. // Comput. Theor. Chem. 2015. Vol. 1061. P. 1. doi 10.1016/ j.comptc.2015.03.003
  31. Sharrock P., Melnik M. // J. Coord. Chem. 1985. Vol. 14. P. 65. doi: 10.1080/00958978508080679
  32. Andersson M.P., Uvdal P. // J. Phys. Chem. (A). 2005. Vol. 109. P. 2937. doi: 10.1021/jp045733a
  33. Nikumbh A.K., Pardeshi S.K., Raste M.N. // Thermochim. Acta. 2001. Vol. 374. P. 115. doi: 10.1016/S0040-6031(01)00483-X
  34. ГОСТ 10896-78. Иониты. Подготовка к испытанию. М.: ИПК Изд. стандартов, 1998. 7 с.
  35. Neese F. // WIREs Comput. Mol. Sci. 2012. Vol. 2. P. 73. doi: 10.1002/wcms.81
  36. Neese F. // WIREs Comput. Mol. Sci. 2017. Vol. 8:e1327. P. 1. doi: 10.1002/wcms.1327
  37. Becke A. D. // Phys. Rev. (A). 1988. Vol. 38. P. 3098. doi: 10.1103/PhysRevA.38.3098
  38. Lee C., Yang W., Parr R. G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. doi: 10.1103/PhysRevB.37.785
  39. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. P. 1456. doi: 10.1002/jcc.21759
  40. Allouche A.-R. // J. Comput. Chem. 2011. Vol. 32. P. 174. doi: 10.1002/jcc.21600

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Спектр ЭПР поликристаллического образца CuSuc–3 при 298 K.

Скачать (51KB)
3. Рис. 2. Оптимизированная структура фрагмента полимерной цепочки сукцината меди(II), расчет на уровне B3LYP-D3BJ/6-311G(d,p).

Скачать (128KB)
4. Рис. 3. ТГ–ДСК кривые для образца CuSuc–3.

Скачать (134KB)
5. Рис. 4. Электронно-микроскопические изображения волокон образца CuSuc–1 (а) и оксида меди, полученного путем его термолиза при 400 (б) и 500°С (в).

Скачать (213KB)
6. Рис. 5. Электронно-микроскопические изображения и гистограммы распределения по размерам микроволокон оксида меди(II): CuO–1 (а), CuO–2 (б), CuO–3 (в).

Скачать (449KB)

© Российская академия наук, 2024