Synthesis of phosphinic structural analogue of Met-Glu-His-Phe

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The synthesis of a phosphinic structural analogue of the tetrapeptide Met-Glu-γ-His-Phe by adding the dipeptide component His-Phe to the adamantyl ester of the phosphinic pseudo-Met-[P]-Glu-peptide in the form of cyclic glutamate anhydride is proposed. The conditions for the interaction of phosphinic pseudo-Met-[P]-Glu-anhydride with His-Phe in free form to form phosphinic Met-[P]-Glu-γ-His-Phe tetrapeptide have been found. A chromatographic mass-spectrometry study, including MS2, and NMR of the phosphinic tetrapeptide on 1H, 13C, 31P nuclei was carried out using the methods of two-dimensional 1H–1H COSY, 1H–13C HSQC and 1H–13C HMBC NMR spectroscopy.

Full Text

Restricted Access

About the authors

V. P. Shevchenko

National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: rvalery@dio.ru
Russian Federation, Moscow

А. V. Borodachev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: rvalery@dio.ru

Institute of Physiologically Active Compounds

Russian Federation, Chernogolovka, Moscow

М. E. Dmitriev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: rvalery@dio.ru

Institute of Physiologically Active Compounds

Russian Federation, Chernogolovka, Moscow

К. V. Shevchenko

National Research Centre “Kurchatov Institute”

Email: rvalery@dio.ru
Russian Federation, Moscow

I. P. Kalashnikova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: rvalery@dio.ru

Institute of Physiologically Active Compounds

Russian Federation, Chernogolovka, Moscow

А. N. Ivanov

University “Synergy”

Email: rvalery@dio.ru
Russian Federation, Moscow

I. Yu. Nagaev

National Research Centre “Kurchatov Institute”

Email: rvalery@dio.ru
Russian Federation, Moscow

V. V. Ragulin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: rvalery@dio.ru

Institute of Physiologically Active Compounds

Russian Federation, Chernogolovka, Moscow

N. F. Myasoedov

National Research Centre “Kurchatov Institute”

Email: rvalery@dio.ru
Russian Federation, Moscow

References

  1. Пономарева-Степная М.А., Бахарев В.Д., Незавибатько В.Н., Андреева Л.А., Алфеева Л.Ю., Потаман В.Н. // Хим.-фарм. ж. 1986. Т. 20. № 6. С. 667.
  2. Пономарева-Степная М.А., Незавибатько В.Н., Антонова Л.В., Андреева Л.А., Алфеева Л.Ю., Потаман В.Н., Каменский А.А., Ашмарин И.П. // Хим.-фарм.ж. 1984. Т. 18. № 7. С. 790.
  3. Ашмарин И.П., Незавибатько В.Н., Мясоедов Н.Ф., Каменский А.А., Гривенников И.А., Пономарева-Степная М.A., Андреева Л.А., Каплан А.Я., Кошелев В.Б., Рясина Т.В. // Журнал высшей нервной деятельности им. И.П. Павлова. 1997. Т. 47. № 2. С. 420.
  4. Amino Y., Nakazawa M., Kaneko M., Miyaki T., Miyamura N., Maruyama Y., Eto Y. // Chem. Pharm. Bull. 2016. Vol. 64. N 8. P. 1181. doi: 10.1248/cpb.c16-00293
  5. Государственный реестр лекарственных средств. М.: Медицинский совет, 2009. Т. 2. Ч. 1, 2.
  6. Collinsova M., Jiracek J. // Curr. Med. Chem. 2000. Vol. 7. N 6. P. 629. doi: 10.2174/0929867003374831
  7. Mucha A. // Molecules. 2012. Vol. 17. N 11. P. 13530. doi: 10.3390/molecules171113530
  8. Georgiadis D., Dive V. // Top. Curr. Chem. 2015.Vol. 360. P. 1. doi: 10.1007/128_2014_571
  9. Zinc Metalloproteases in Health and Disease / Ed. N.M. Hooper. London: Taylor and Francis, 1996. P. 153.
  10. Hori M., Nishida K. // Cardiovasc. Res. 2009. Vol. 81. N 3. P. 457. doi: 10.1093/cvr/cvn3359
  11. Whittaker M., Ayscough A. // Celltransmissions. 2001.Vol. 17. N 1. P. 3.
  12. Pirad B., Matter H. // J. Med. Chem. 2006. Vol. 49.N 1. P. 51. doi: 10.1021/jm050363f
  13. Vinyukov A.V., Dmitriev M.E., Andreeva L.A., Ustyugov A.A., Shevchenko V.P., Sidoruk K.N., Lednev B.V., Freyman V.M., Dobrovolskiy Y.A., Ragulin V.V., Myasoedov N.F. // Biochem. Biophys. Res. Commun. 2021. Vol. 539. P. 15. doi: 10.1016/j.bbrc.2020.12.087
  14. Дмитриев М.Э., Шевченко К.В., Шевченко В.П., Нагаев И.Ю., Калашникова И.П., Рагулин В.В., Мясоедов Н.Ф. // ЖОХ. 2023. Т. 93. № 8. С. 1253. doi: 10.31857/S0044460X23080103; Dmitriev M.E., Shevchenko K.V., Shevchenko V.P., Nagaev I.Yu., Kalashnikova I.P., Ragulin V.V., Myasoedov N.F. // Russ. J. Gen. Chem. 2023. Vol. 93. N 8. P. 2022. doi: 10.1134/S1070363223080108
  15. Дмитриев М.Э., Винюков А.В., Рагулин В.В., Мясоедов Н.Ф. // ЖОХ. 2015. Т. 85. Вып. 9. С. 1576; Dmitriev M.E., Vinyukov A.V., Ragulin V.V., Myasoedov N.F. // Russ. J. Gen. Chem. 2015. Vol. 85. N 9. P. 2215. doi: 10.1134/S1070363215090315
  16. Dmitriev M.E., Ragulin V.V. // Tetrahedron Lett. 2010. Vol. 51. N. 19. P. 2613. doi: 10.1016/j.tetlet.2010.03.02013.
  17. Dmitriev M.E., Ragulin V.V. // Tetrahedron Lett. 2012. Vol. 53. N. 13. P. 1634. doi: 10.1016/j.tetlet.2012.01.09414.
  18. Dmitriev M.E., Golovash S.R., Borodachev A.V., Ragulin V.V. // J. Org. Chem. 2021. Vol. 86. N 1. P. 593. doi: 10.1021/acs.joc.0c02259

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. 31P{1H} NMR spectra (202.48 MHz) of tetrapeptide 1 in CDCl3 (1), acetone-d6 (2), acetone-d6–D2O mixture (8:2, vol.) (3).

Download (59KB)
3. Fig.2. 1H NMR spectra (500.2 MHz) of tetrapeptide 1 in CDCl3 (1), acetone-d6 (2), acetone-d6–D2O mixture (8:2, vol.) (3).

Download (74KB)
4. Fig.3. 1H NMR spectrum (500.2 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.).

Download (194KB)
5. Fig.4. Fragment of the 1H NMR spectrum (500.2 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.). Signals of histidine are marked in green, phenylalanine in blue, pseudoglutamine in red, and pseudomethionine in lilac.

Download (183KB)
6. Fig.5. Fragment of the 1H NMR spectrum (500.2 MHz) of tetrapeptide 1 in acetone-d6 (region of NH and CH= protons).

Download (142KB)
7. Fig.6. 13С{1H} NMR spectrum (125.79 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol).

Download (133KB)
8. Fig.7. Fragment of the 13C{1H} NMR spectrum (125.79 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.). The region of carboxyl and amide carbons is shown. The complexity of the signals is due to different diastereomeric and conformer forms.

Download (87KB)
9. Fig.8. Fragment of the 13C{1H} NMR spectrum (125.79 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.). The region of aromatic carbons is given.

Download (79KB)
10. Fig.9. 1H–1H COSY NMR spectrum (500.2 MHz) of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol.).

Download (178KB)
11. Fig. 10. 1H–1H COSY NMR spectrum (500.2 MHz) of tetrapeptide 1 in acetone-d6. The area of NH group signals is shown.

Download (261KB)
12. Fig. 11. 1H–13C HSQC NMR spectrum of tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, vol).

Download (241KB)
13. Fig. 12. 1H–13C NMR spectrum of HMBC tetrapeptide 1 in a mixture of acetone-d6–D2O (8:2, v/v).

Download (234KB)
14. Scheme 1.

Download (64KB)
15. Scheme 2.

Download (97KB)
16. Scheme 3.

Download (77KB)

Copyright (c) 2024 Russian Academy of Sciences