New lithium tungstophosphate complex. synthesis, crystal structure. Catalytic properties of a tetranuclear cobalt complex with tungstenphosphate ligands and lithium countercation in the reaction of photochemical water oxidation in artificial photosynthesis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Polyoxotungstophosphate complex Li7[γ-PW10O36] · 7H2O was synthesized. Structure was studied by the X-ray method. Rhombic crystals, space group P21212, a = 12.401(3) b = 18.948(4), c = 9.636(2) Å, V = 2265 Å3, Z = 2 (the heteropolyanion sits on a crystallographic twofold axis), λ = 0.71069 Å. The complex is thermostable. The interaction of Li7W10PO36 with Co(NO3)2 forms a tetranuclear complex Co(II) Li7[Co4(H2O)2(γ-PW10O36)2] · 36H2O – an effective catalyst for the water oxidation to O2. The number of turns of the catalyst is TON = 330, the quantum yield of photogenerated oxygen is ФO₂ = 0.46.

全文:

受限制的访问

作者简介

Z. Dzhabieva

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka

G. Shilov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka

L. Avdeeva

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka

T. Savinykh

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka

T. Dzhabiev

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: dzhabiev@icp.ac.ru
俄罗斯联邦, Chernogolovka

参考

  1. Pope M.T. // Polyoxo Anions: Synthesis and Structure. Jn Comprehensive Coordination Chemistry II: Transition Metal Groups 3–6. N.Y.: Elsevier Science, 2004. V. 4. Ch. 4.09. P. 635.
  2. Hill C.L. // Chem. Rev. 1998. V. 98. № 1.
  3. Hill C.L. // Polyoxometalates: Reactivity in Comprehensive Coordination Chemistry II: Transition Metal Groups 3-6. N.Y.: Elsevier Science, 2004. V. 4. Ch. 4.10. P. 679.
  4. Polyoxometalate Chemistry: From Topology via Self – Assembly to Applications / Eds. Pope M.T., Műller A. Kluwer: Dordrecht, 2001.
  5. Nishiyama Y., Nakagawa Y., Mizuno N. // Angew. Chem. Jnt. Ed. 2001. V. 40. P. 3639. https://doi.org/10.1002/1521-3773(20011001)40:19<3639:AID-ANIE3639>3.0.CO;2-0
  6. Kozhevnikov J.V. // Catalysis by Polyoxometalates. Chichester: John Wiley and Sons, 2002. ISBN: 0471623814
  7. Коренев В.С., Сухих Т.С., Соколов М.Н. // Изв. Акад. наук. Сер. Хим. 2023. Т. 72. № 1. С. 158.
  8. Коренев В.С., Абрамов П.А., Соколов М.Н. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1575. https://doi.org/10.31857/S0044457X22100324.
  9. Ткаченко О.П., Газаров Р.А., Кустов Л.М. // Журн. физ. химии. 2021. Т. 95. № 8. С. 1180. https://doi.org/10.31857/S0044453721080264
  10. Keggin J.F. // Proc. R. Soc. Lond. A. 1934. V. 144. P. 75.
  11. http://doi.org/10/1098/rspa.1934.0035
  12. Kärkäs M.D., Verho O., Jonston E.V., Åkermark B. // Chem. Rev. 2014. V. 114. P. 11863. https://doi.org/10.1021/cr400572.
  13. Geletii Y.V., Botar B., Kogerler P. et al. // Angew. Chem. Int. Ed. 2008. V. 47. № 21. P. 3847. https://doi.org/10.1002/anie.200705652.
  14. Sartorel A., Carraro M., Scorrano G. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 5006. https://doi.org/10.1021/ja0778371
  15. Geletii Y.V., Huan Z., Hou Y. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 7522. https://doi.org/10.1021/ja901373m
  16. Toma F.M., Sartorel A., Iurlo M. et al. // Nat. Chem. 2010. V. 2. P. 826. https://doi.org/10.1038/nchem.761
  17. Besson C., Huang Z., Geleti Y.V. et al. // Chem. Commun. 2010. V. 46. P. 2784. https://doi.org/10.1039/B926064A
  18. Murakami M., Hong D., Suenobu T. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 11605. https://doi.org/10.1021/ja2024965
  19. Zhu G., Geletii Y.V., Kogerler P. et al. // Dalton Trans. 2012. V. 41. P. 2084. https://doi.org/10.1039/ C1DT11211B
  20. Lv H., Geletii Y.V., Zhao C. et al. // Chem. Soc. Rev. 2012. V. 41. P. 7572. https://doi.org/10.1039/C2CS35292C
  21. Sartorel A., Bonchio M., Campagna S. et al. // Chem. Soc. Rev. 2014. V. 42. P. 2262. https://doi.org/10.1039/c2cs35287g
  22. Vickers J.W., Lv H., Sumliner J.M. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 14110. https://doi.org/10.1021/ja4024868
  23. Sumliner J.M., Lv H., Fielden J. et al. // Eur. J. Inorg. Chem. 2014. P. 635. https://doi.org/10.1002/ejic.201800578
  24. Vickers J.W., Sumliner J.M., Lv H. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 11942. https://pubs.acs.org/doi/10.1021/ja5045488
  25. Han X.-B., Zhang Z.-M., Zhang T. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 5359. https://doi.org/10.1021/ja41886e
  26. Hurst J.K. // Science. 2010. V. 328. P. 315. https://doi.org/10.1126/science.1187721
  27. Yagi M., Kaneko M. // Chem. Rev. 2001. V. 101. P. 21. https://doi.org/10.1021/cr9801081
  28. Sens C., Romero I., Rodriguez M. et al. // J. Am. Chem. Soc. 2004. V. 126. P. 7798. https://doi.org/10.1021/ja0486824
  29. Suess-Fink G. // Angew. Chem. Int. Ed. 2008. V. 47. P. 5888. https://doi.org/10.1002/anie.200801121
  30. Gersten S.W., Samuels G.J., Meyer T.J. // J. Am. Chem. Soc. 1982. V. 104. P. 4029. https://doi.org/10.1021/ja00378a053
  31. Шматко Н.Ю., Джабиева З.М. Химическое моделирование фермента, окисляющего воду в фотосистеме II. Фотокаталитические преобразователи солнечной энергии в энергию химических топлив. 76 с. LAP LAMBERT Academic Publishing. Saarbrucken, 2012. ISBN: 978-3-659-29482-2
  32. Джабиева З.М., Якуткина О.В., Джабиев Т.С., Шилов А.Е. // Кинетика и катализ. 2014. Т. 55. № 4. С. 117. https://doi.org/10.7868/S0453881114040030
  33. Джабиева З.М., Ткаченко В.Ю., Джабиев Т.С. // Химия высоких энергий. 2017 Т. 51. № 3. С. 230. https://doi.org/10.7868/S0023119317030056
  34. Domaille P.I. // Inorg. Synth. 1990. V. 27. P. 96. https://link.springer.com/book/10.1007/0-306-47625-8
  35. Agilent. CrysAlis PRO. Agilent Technologies UK Ltd. Yarnton, Oxfordshire, 2011.
  36. Sheldrick G.M. SHELXTL. V. 6.14, Structure Determination Software Suite, Brucker AXS. Wisconsin: Madison, 2000.
  37. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1966. 411 с.
  38. Hatchard C.G., Parker C.A. // Proc. R. Soc. London, Ser. A. 1956. V. 235. № 1203. P. 518.
  39. Джабиев Т.С. // Матер. Всерос. школы-конф. “Фотокатализ – от фундаментальных исследований до практического применения”. Новосибирск, 6–7 октября, 2022.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Crystal structure of heteropolyanion Li7[γ-PW10O36] · 7H2O

下载 (520KB)
3. Fig. 2. 31P NMR spectrum of Li7PW10O36 (H2O/D2O, 400 MHz) in sodium phosphate buffer solution, pH 8, 25°C, the chemical shift (δ) with respect to the reference standard, 85% H3PO4, is -13.2 m.d

下载 (201KB)
4. Fig. 3. IR spectrum of the tetra-nuclear cobalt complex Li7[Co4(H2O)2 - (γ-PW10O36)2] - 36H2O

下载 (62KB)
5. Fig. 4. Electronic absorption spectrum of the complex Li7[Co4(H2O)2 - (γ-PW10O36)2] - 36H2O (500 μmol) at λ = 580 nm in 0.1 M sodium phosphate buffer solution, pH 8, cuvette thickness l = 1 cm

下载 (43KB)
6. Fig. 5. Thermogravimetric analysis curves of Li7[Co4(H2O)2 - (γ-PW10O36)2] - 36H2O complex in nitrogen atmosphere: 1 - TG; 2 - DTG. Heating rate 5 deg/min

下载 (99KB)
7. Fig. 6. Kinetics of oxygen formation in the photocatalytic system in the presence of catalysts: 1 - Li7[Co4(H2O)2(γ-PW9O34)2] - 36H2O (Li7Co4), 2 - Li10[{Ru4(μ-O)4(μ-OH)2(H2O)4} - (γ-SiW10O36)2] - 10H2O (Li10Ru4), 3 - Rb8K2[{Ru4(μ-O)4(μ-OH)2(H2O)4} - (γ-SiW10O36)2] - 25H2O (Rb8K2Ru4). Conditions: DRSH-1000 lamp, light filter λ = 450 nm, dquartz reactor = 4 cm, Vp = 48 mL, 1 mM [Ru(bpy)3]2+, 5 mM Na2S2O8, 5 μM catalyst. 1 - 80 mM sodium phosphate buffer; 2 - 80 mM sodium phosphate buffer; 3 - 3 M H2SO4

下载 (83KB)

版权所有 © Russian Academy of Sciences, 2024