NaLn(IO3)4 Iodates (Ln = Pr, Tb): New Representatives of Nonlinear Optical Crystals with the NaY(IO3)4 Structure
- Autores: Grigorieva O.P.1, Stefanovich S.Y.1, Charkin D.O.1, Dolgikh V.A.1, Lysenko K.A.1
-
Afiliações:
- Chemistry Department, Moscow State University
- Edição: Volume 68, Nº 11 (2023)
- Páginas: 1528-1536
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666129
- DOI: https://doi.org/10.31857/S0044457X23600561
- EDN: https://elibrary.ru/DJQAEK
- ID: 666129
Citar
Resumo
Interaction of rare-earth oxides (Pr, Tb, Er) with periodic acid or sodium iodate under hydrothermal conditions in the presence of Na2HPO4⋅12H2O leads to formation of complex NaLn(IO3)4 iodates. The compounds of Pr and Tb are reported for the first time. Single-crystal studies reveal that they are isostructural to the previously reported analogs of other rare-earths and adopt the non-centrosymmetric space group Сс. Polycrystalline samples generate a strong SHG signal above that of the potassium dihydrogen phosphate reference standard. They also exhibit wide optical transparency areas and high thermal stability.
Palavras-chave
Sobre autores
O. Grigorieva
Chemistry Department, Moscow State University
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
S. Stefanovich
Chemistry Department, Moscow State University
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
D. Charkin
Chemistry Department, Moscow State University
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
V. Dolgikh
Chemistry Department, Moscow State University
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
K. Lysenko
Chemistry Department, Moscow State University
Autor responsável pela correspondência
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
Bibliografia
- Chen J., Hu C.L., Kong F. et al. // Acc. Chem. Res. 2021. V. 54. P. 2775. https://doi.org/10.1021/acs.accounts.1c00188
- Gong P., Liang F., Kang L. et al. // Coord. Chem. Rev. 2019. V. 380. P. 83. https://doi.org/10.1016/j.ccr.2018.09.011
- Chen X., Ok K.M. // Chem. Asian J. 2020. V. 15. I. 22. P. 3709. https://doi.org/10.1002/asia.202001086
- Chen C.T., Wu B.C., Jiang A.D. et al. // Sci. Sin. Ser. B. 1985. V. 28. P. 235.
- Fedorov P.P., Kokh A.E., Kononova N.G. // Russ. Chem. Rev. 2002. V. 71. P. 651. https://doi.org/10.1070/RC2002v071n08ABEH000716
- Chen C.T., Wu Y.C., Jiang A.D. et al. // J. Opt. Soc. Am. B: Opt. Phys. 1989. V. 6. № 4. P. 616. https://doi.org/10.1364/JOSAB.6.000616
- Boyd G.D., Nassau K., Miller R.C. et al. // Appl. Phys. Lett. 1964. V. 5. P. 234. https://doi.org/10.1063/1.1723604
- Haussuhl S. // Z. Kristallogr. 1964. V. 120. P. 401. https://doi.org/10.1524/zkri.1964.120.16.401
- Bierlein J.D., Vanherzeele H. // J. Opt. Soc. Am. B: Opt. Phys. 1989. V. 6. P. 622. https://doi.org/10.1364/JOSAB.6.000622
- Liang F., Kang L., Lin Z. et al. // Cryst. Growth Des. 2017. V. 17. P. 2254. https://doi.org/10.1021/acs.cgd.7b00214
- Feng J.H., Hu C.L., Xu X. et al. // Chem. Eur. J. 2017. V. 23. P. 10933. https://doi.org/10.1002/chem.201702632
- Phanon D., Bentria B., Benbertal D. et al. // Solid State Sci. 2006. V. 8. P. 1466. https://doi.org/10.1016/j.solidstatesciences.2006.07.014
- Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. P. 1123. https://doi.org/10.1039/B612677D
- Hu C.L., Mao J.G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
- Silambarasan A., Rajesh P., Ramasamy P. et al. // Bull. Mater. Sci. 2017. V. 40. № 4. P. 783. https://doi.org/10.1007/s12034-017-1427-8
- Xu X., Hu C.L., Li B.X. et al. // Chem. Mater. 2014. V. 26. P. 3219. https://doi.org/10.1021/cm500898q
- Chen J., Hu C.L., Mao F.F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
- Mao F.F., Hu C.L., Chen J. et al. // Inorg. Chem. 2019. V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
- Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Advan. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Parson S. // Tetrahedron: Asymmetry. 2017. V. 28. P. 1304. https://doi.org/10.1016/j.tetasy.2017.08.018
- Torbeev V.Y., Lyssenko K.A., Kharybin O.N. et al. // J. Phys. Chem. B. 2003. V. 107. P. 13523. https://doi.org/10.1021/jp035588l
- Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1063/1.1656857
- Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 9353. https://doi.org/10.1021/ic051340u
- Bresse N.E., O’Keeffe M. // Acta Crystallogr. 1991. V. B47. P. 192. https://doi.org/10.1107/S0108768190011041
- Liu H.M., Wang X.X., Meng X.G. et al. // J. Synth. Cryst. 2020. V. 49. P. 1523.
- Jia Y.J., Chen Y.G., Wang T. et al. // Dalton Trans. 2019. V. 48. P. 10320. https://doi.org/10.1039/C9DT01573F
- Oh S.J., Kim H.G., Jo H. et al. // Inorg. Chem. 2017. V. 56. P. 6973. https://doi.org/10.1021/acs.inorgchem.7b00531
- Phanon D., Suffren Y., Taouti M.B. et al. // J. Mater. Chem. C. 2014. V. 2. P. 2715. https://doi.org/10.1039/C3TC32517B
Arquivos suplementares
