NaLn(IO3)4 Iodates (Ln = Pr, Tb): New Representatives of Nonlinear Optical Crystals with the NaY(IO3)4 Structure

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Interaction of rare-earth oxides (Pr, Tb, Er) with periodic acid or sodium iodate under hydrothermal conditions in the presence of Na2HPO4⋅12H2O leads to formation of complex NaLn(IO3)4 iodates. The compounds of Pr and Tb are reported for the first time. Single-crystal studies reveal that they are isostructural to the previously reported analogs of other rare-earths and adopt the non-centrosymmetric space group Сс. Polycrystalline samples generate a strong SHG signal above that of the potassium dihydrogen phosphate reference standard. They also exhibit wide optical transparency areas and high thermal stability.

About the authors

O. P. Grigorieva

Chemistry Department, Moscow State University

Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia

S. Yu. Stefanovich

Chemistry Department, Moscow State University

Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia

D. O. Charkin

Chemistry Department, Moscow State University

Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia

V. A. Dolgikh

Chemistry Department, Moscow State University

Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia

K. A. Lysenko

Chemistry Department, Moscow State University

Author for correspondence.
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia

References

  1. Chen J., Hu C.L., Kong F. et al. // Acc. Chem. Res. 2021. V. 54. P. 2775. https://doi.org/10.1021/acs.accounts.1c00188
  2. Gong P., Liang F., Kang L. et al. // Coord. Chem. Rev. 2019. V. 380. P. 83. https://doi.org/10.1016/j.ccr.2018.09.011
  3. Chen X., Ok K.M. // Chem. Asian J. 2020. V. 15. I. 22. P. 3709. https://doi.org/10.1002/asia.202001086
  4. Chen C.T., Wu B.C., Jiang A.D. et al. // Sci. Sin. Ser. B. 1985. V. 28. P. 235.
  5. Fedorov P.P., Kokh A.E., Kononova N.G. // Russ. Chem. Rev. 2002. V. 71. P. 651. https://doi.org/10.1070/RC2002v071n08ABEH000716
  6. Chen C.T., Wu Y.C., Jiang A.D. et al. // J. Opt. Soc. Am. B: Opt. Phys. 1989. V. 6. № 4. P. 616. https://doi.org/10.1364/JOSAB.6.000616
  7. Boyd G.D., Nassau K., Miller R.C. et al. // Appl. Phys. Lett. 1964. V. 5. P. 234. https://doi.org/10.1063/1.1723604
  8. Haussuhl S. // Z. Kristallogr. 1964. V. 120. P. 401. https://doi.org/10.1524/zkri.1964.120.16.401
  9. Bierlein J.D., Vanherzeele H. // J. Opt. Soc. Am. B: Opt. Phys. 1989. V. 6. P. 622. https://doi.org/10.1364/JOSAB.6.000622
  10. Liang F., Kang L., Lin Z. et al. // Cryst. Growth Des. 2017. V. 17. P. 2254. https://doi.org/10.1021/acs.cgd.7b00214
  11. Feng J.H., Hu C.L., Xu X. et al. // Chem. Eur. J. 2017. V. 23. P. 10933. https://doi.org/10.1002/chem.201702632
  12. Phanon D., Bentria B., Benbertal D. et al. // Solid State Sci. 2006. V. 8. P. 1466. https://doi.org/10.1016/j.solidstatesciences.2006.07.014
  13. Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. P. 1123. https://doi.org/10.1039/B612677D
  14. Hu C.L., Mao J.G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
  15. Silambarasan A., Rajesh P., Ramasamy P. et al. // Bull. Mater. Sci. 2017. V. 40. № 4. P. 783. https://doi.org/10.1007/s12034-017-1427-8
  16. Xu X., Hu C.L., Li B.X. et al. // Chem. Mater. 2014. V. 26. P. 3219. https://doi.org/10.1021/cm500898q
  17. Chen J., Hu C.L., Mao F.F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
  18. Mao F.F., Hu C.L., Chen J. et al. // Inorg. Chem. 2019. V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
  19. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
  20. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Advan. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  21. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  22. Parson S. // Tetrahedron: Asymmetry. 2017. V. 28. P. 1304. https://doi.org/10.1016/j.tetasy.2017.08.018
  23. Torbeev V.Y., Lyssenko K.A., Kharybin O.N. et al. // J. Phys. Chem. B. 2003. V. 107. P. 13523. https://doi.org/10.1021/jp035588l
  24. Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1063/1.1656857
  25. Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 9353. https://doi.org/10.1021/ic051340u
  26. Bresse N.E., O’Keeffe M. // Acta Crystallogr. 1991. V. B47. P. 192. https://doi.org/10.1107/S0108768190011041
  27. Liu H.M., Wang X.X., Meng X.G. et al. // J. Synth. Cryst. 2020. V. 49. P. 1523.
  28. Jia Y.J., Chen Y.G., Wang T. et al. // Dalton Trans. 2019. V. 48. P. 10320. https://doi.org/10.1039/C9DT01573F
  29. Oh S.J., Kim H.G., Jo H. et al. // Inorg. Chem. 2017. V. 56. P. 6973. https://doi.org/10.1021/acs.inorgchem.7b00531
  30. Phanon D., Suffren Y., Taouti M.B. et al. // J. Mater. Chem. C. 2014. V. 2. P. 2715. https://doi.org/10.1039/C3TC32517B

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (705KB)
3.

Download (901KB)
4.

Download (624KB)
5.

Download (762KB)
6.

Download (207KB)
7.

Download (94KB)
8.

Download (171KB)

Copyright (c) 2023 О.П. Григорьева, С.Ю. Стефанович, Д.О. Чаркин, В.А. Долгих, К.А. Лысенко