NaLn(IO3)4 Iodates (Ln = Pr, Tb): New Representatives of Nonlinear Optical Crystals with the NaY(IO3)4 Structure
- Authors: Grigorieva O.P.1, Stefanovich S.Y.1, Charkin D.O.1, Dolgikh V.A.1, Lysenko K.A.1
-
Affiliations:
- Chemistry Department, Moscow State University
- Issue: Vol 68, No 11 (2023)
- Pages: 1528-1536
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/666129
- DOI: https://doi.org/10.31857/S0044457X23600561
- EDN: https://elibrary.ru/DJQAEK
- ID: 666129
Cite item
Abstract
Interaction of rare-earth oxides (Pr, Tb, Er) with periodic acid or sodium iodate under hydrothermal conditions in the presence of Na2HPO4⋅12H2O leads to formation of complex NaLn(IO3)4 iodates. The compounds of Pr and Tb are reported for the first time. Single-crystal studies reveal that they are isostructural to the previously reported analogs of other rare-earths and adopt the non-centrosymmetric space group Сс. Polycrystalline samples generate a strong SHG signal above that of the potassium dihydrogen phosphate reference standard. They also exhibit wide optical transparency areas and high thermal stability.
About the authors
O. P. Grigorieva
Chemistry Department, Moscow State University
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
S. Yu. Stefanovich
Chemistry Department, Moscow State University
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
D. O. Charkin
Chemistry Department, Moscow State University
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
V. A. Dolgikh
Chemistry Department, Moscow State University
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
K. A. Lysenko
Chemistry Department, Moscow State University
Author for correspondence.
Email: oksankagrigorevaa@mail.ru
119991, Moscow, Russia
References
- Chen J., Hu C.L., Kong F. et al. // Acc. Chem. Res. 2021. V. 54. P. 2775. https://doi.org/10.1021/acs.accounts.1c00188
- Gong P., Liang F., Kang L. et al. // Coord. Chem. Rev. 2019. V. 380. P. 83. https://doi.org/10.1016/j.ccr.2018.09.011
- Chen X., Ok K.M. // Chem. Asian J. 2020. V. 15. I. 22. P. 3709. https://doi.org/10.1002/asia.202001086
- Chen C.T., Wu B.C., Jiang A.D. et al. // Sci. Sin. Ser. B. 1985. V. 28. P. 235.
- Fedorov P.P., Kokh A.E., Kononova N.G. // Russ. Chem. Rev. 2002. V. 71. P. 651. https://doi.org/10.1070/RC2002v071n08ABEH000716
- Chen C.T., Wu Y.C., Jiang A.D. et al. // J. Opt. Soc. Am. B: Opt. Phys. 1989. V. 6. № 4. P. 616. https://doi.org/10.1364/JOSAB.6.000616
- Boyd G.D., Nassau K., Miller R.C. et al. // Appl. Phys. Lett. 1964. V. 5. P. 234. https://doi.org/10.1063/1.1723604
- Haussuhl S. // Z. Kristallogr. 1964. V. 120. P. 401. https://doi.org/10.1524/zkri.1964.120.16.401
- Bierlein J.D., Vanherzeele H. // J. Opt. Soc. Am. B: Opt. Phys. 1989. V. 6. P. 622. https://doi.org/10.1364/JOSAB.6.000622
- Liang F., Kang L., Lin Z. et al. // Cryst. Growth Des. 2017. V. 17. P. 2254. https://doi.org/10.1021/acs.cgd.7b00214
- Feng J.H., Hu C.L., Xu X. et al. // Chem. Eur. J. 2017. V. 23. P. 10933. https://doi.org/10.1002/chem.201702632
- Phanon D., Bentria B., Benbertal D. et al. // Solid State Sci. 2006. V. 8. P. 1466. https://doi.org/10.1016/j.solidstatesciences.2006.07.014
- Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. P. 1123. https://doi.org/10.1039/B612677D
- Hu C.L., Mao J.G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
- Silambarasan A., Rajesh P., Ramasamy P. et al. // Bull. Mater. Sci. 2017. V. 40. № 4. P. 783. https://doi.org/10.1007/s12034-017-1427-8
- Xu X., Hu C.L., Li B.X. et al. // Chem. Mater. 2014. V. 26. P. 3219. https://doi.org/10.1021/cm500898q
- Chen J., Hu C.L., Mao F.F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
- Mao F.F., Hu C.L., Chen J. et al. // Inorg. Chem. 2019. V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
- Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Advan. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Parson S. // Tetrahedron: Asymmetry. 2017. V. 28. P. 1304. https://doi.org/10.1016/j.tetasy.2017.08.018
- Torbeev V.Y., Lyssenko K.A., Kharybin O.N. et al. // J. Phys. Chem. B. 2003. V. 107. P. 13523. https://doi.org/10.1021/jp035588l
- Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1063/1.1656857
- Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 9353. https://doi.org/10.1021/ic051340u
- Bresse N.E., O’Keeffe M. // Acta Crystallogr. 1991. V. B47. P. 192. https://doi.org/10.1107/S0108768190011041
- Liu H.M., Wang X.X., Meng X.G. et al. // J. Synth. Cryst. 2020. V. 49. P. 1523.
- Jia Y.J., Chen Y.G., Wang T. et al. // Dalton Trans. 2019. V. 48. P. 10320. https://doi.org/10.1039/C9DT01573F
- Oh S.J., Kim H.G., Jo H. et al. // Inorg. Chem. 2017. V. 56. P. 6973. https://doi.org/10.1021/acs.inorgchem.7b00531
- Phanon D., Suffren Y., Taouti M.B. et al. // J. Mater. Chem. C. 2014. V. 2. P. 2715. https://doi.org/10.1039/C3TC32517B
Supplementary files
