Formation of Layered Biocomposite as a Promising Basis for Metal-Ceramic Bone Implants
- Авторлар: Belov A.A.1, Kapustina O.V.1, Kolodeznikov E.S.1, Shichalin O.O.1, Fedorets A.N.1, Zolotnikov S.K.1, Papynov E.K.1
-
Мекемелер:
- Far Eastern Federal University
- Шығарылым: Том 70, № 6 (2025)
- Беттер: 765-775
- Бөлім: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/686360
- DOI: https://doi.org/10.31857/S0044457X25060048
- EDN: https://elibrary.ru/IBGBEN
- ID: 686360
Дәйексөз келтіру
Аннотация
The research is devoted to the development of a layered biocomposite in the form of a functional-gradient material (FGM) combining Ti-6Al-4V alloy and bioceramics based on titanium dioxide with hydroxyapatite, promising for use in metal-ceramic bone implants. The method of FGM formation overcoming the limitations of its components, such as low mechanical strength of bioceramics and lack of osteoinductivity in titanium medical alloys, is presented. In this work, a spark plasma sintering (SPS) technique was utilized to achieve a strong and unbreakable bond between the ceramic and alloy layers. The results showed that the phase composition of both materials remained stable during the heating process, and an intermediate layer of β-Ti was formed at the contact interface, which improved the mechanical strength of the joint. Microhardness tests confirmed the integrity of the composite with preservation of strength at the interface between the ceramic and alloy. The absence of defects and internal stresses at the boundaries of the formed joint testify to its high mechanical stability and demonstrate the potential of the method for possible practical application in order to create modern structurally strong implants with improved osseointegration function.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Belov
Far Eastern Federal University
Хат алмасуға жауапты Автор.
Email: belov_aa@dvfu.ru
Ресей, 10, Ajax Bay, Russky Island, Vladivostok, 690922
O. Kapustina
Far Eastern Federal University
Email: belov_aa@dvfu.ru
Ресей, 10, Ajax Bay, Russky Island, Vladivostok, 690922
E. Kolodeznikov
Far Eastern Federal University
Email: belov_aa@dvfu.ru
Ресей, 10, Ajax Bay, Russky Island, Vladivostok, 690922
O. Shichalin
Far Eastern Federal University
Email: belov_aa@dvfu.ru
Ресей, 10, Ajax Bay, Russky Island, Vladivostok, 690922
A. Fedorets
Far Eastern Federal University
Email: belov_aa@dvfu.ru
Ресей, 10, Ajax Bay, Russky Island, Vladivostok, 690922
S. Zolotnikov
Far Eastern Federal University
Email: belov_aa@dvfu.ru
Ресей, 10, Ajax Bay, Russky Island, Vladivostok, 690922
E. Papynov
Far Eastern Federal University
Email: belov_aa@dvfu.ru
Ресей, 10, Ajax Bay, Russky Island, Vladivostok, 690922
Әдебиет тізімі
- Ranjan N., Singh R., Ahuja I. // Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 2019. V. 233. № 7. P. 754. https://doi.org/10.1177/0954411919852811
- Oltean-Dan D., Dogaru G.-B., Jianu E.-M. et al. // Micromachines. 2021. V. 12. № 11. P. 1352. https://doi.org/10.3390/mi12111352
- Logesh M., Ahn S.-G., Choe H.-C. // J. Mater. Res. Technol. 2024. V. 33. P. 7620. https://doi.org/10.1016/j.jmrt.2024.11.114
- Hosseini M., Khalil-Allafi J., Safavi M.S. // J. Mater. Res. Technol. 2024. V. 33. № August. P. 4055. https://doi.org/10.1016/j.jmrt.2024.10.081
- Nisar S.S., Arun S., Toan N.K. et al. // J. Mater. Res. Technol. 2024. V. 31. № June. P. 1282. https://doi.org/10.1016/j.jmrt.2024.06.155
- Liu Y., Wang G., Zhao Y. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 5. P. 1995. https://doi.org/10.1016/j.jeurceramsoc.2021.12.063
- Zhou X., Han Y.H., Shen X. et al. // J. Nucl. Mater. 2015. V. 466. P. 322. https://doi.org/10.1016/j.jnucmat.2015.08.004
- Zhou X., Yang H., Chen F. et al. // Carbon N. Y. 2016. V. 102. P. 106. https://doi.org/10.1016/j.carbon.2016.02.036
- Zhao X., Duan L., Liu W. et al. // J. Eur. Ceram. Soc. 2019. V. 39. № 16. P. 5473. https://doi.org/10.1016/j.jeurceramsoc.2019.08.013
- Zhao X., Duan L., Wang Y. // J. Eur. Ceram. Soc. 2019. V. 39. № 5. P. 1757. https://doi.org/10.1016/j.jeurceramsoc.2019.01.020
- Tatarko P., Grasso S., Saunders T.G. et al. // J. Eur. Ceram. Soc. 2017. V. 37. № 13. P. 3841. https://doi.org/10.1016/j.jeurceramsoc.2017.05.016
- Zhao X., Duan L., Liu W. et al. // Ceram. Int. 2019. V. 45. № 17. P. 23111. https://doi.org/10.1016/j.ceramint.2019.08.005
- Zhou X., Han Y.-H., Shen X. et al. // J. Nucl. Mater. 2015. V. 466. P. 322. https://doi.org/10.1016/j.jnucmat.2015.08.004
- Tatarko P., Grasso S., Saunders T.G. et al. // J. Eur. Ceram. Soc. 2017. V. 37. № 13. P. 3841. https://doi.org/10.1016/j.jeurceramsoc.2017.05.016
- Rafiei M., Eivaz Mohammadloo H., Khorasani M. et al. // Heliyon. 2025. V. 11. № 2. P. E41813. https://doi.org/10.1016/j.heliyon.2025.e41813
- Gabor R., Cvrček L., Causidu S. et al. // Surf. Interfaces. 2021. V. 25. № December. 2020. V. 101209. https://doi.org/10.1016/j.surfin.2021.101209
- Al-Kaisy H.A., Issa R.A.H., Faheed N.K. et al. // Rev. Compos. Mater. Av. 2024. V. 34. № 2. P. 125. https://doi.org/10.18280/rcma.340201
- Ramasamy P., Sundharam S. // J. Aust. Ceram. Soc. 2021. V. 57. № 2. P. 605. https://doi.org/10.1007/s41779-021-00561-w
- Lin Y., Balbaa M., Zeng W. et al. // J. Mater. Eng. Perform. 2023. V. 33. № 18. P. 9664. https://doi.org/10.1007/s11665-023-08632-8
- Asgarian R., Khalghi A., Kiani Harchegani R. et al. // Appl. Phys. A: Mater. Sci. Process. 2021. V. 127. № 1. P. 1. https://doi.org/10.1007/s00339-020-04188-9
- Rodrigues L.F., Tronco M.C., Escobar C.F. et al. // Ceram. Int. 2019. V. 45. № 12. P. 14806. https://doi.org/10.1016/j.ceramint.2019.04.211
- Yang W., Han Q., Chen H. et al. // J. Mater. Sci. Technol. 2024. V. 188. P. 116. https://doi.org/10.1016/j.jmst.2023.10.061
- Abdullah Naji F.A., Murtaza Q., Niranjan M.S. // Precis. Eng. 2024. V. 88. P. 81. https://doi.org/10.1016/j.precisioneng.2024.01.019
- Qiu J., Ding Z., Yi Y. et al. // Mater. Today Commun. 2024. V. 38. P. 108146. https://doi.org/10.1016/j.mtcomm.2024.108146
- Navarro M., Michiardi A., Castaño O. et al. // J. R. Soc. Interface. 2008. V. 5. № 27. P. 1137. https://doi.org/10.1098/rsif.2008.0151
- Kumari R., Kumar S., Das A.K. et al. // Appl. Surf. Sci. Adv. 2024. V. 24. P. 100655. https://doi.org/10.1016/j.apsadv.2024.100655
- Pauline S.A., Karuppusamy I., Gopalsamy K. et al. // J. Taiwan Inst. Chem. Eng. 2024. V. 166. Part 2. № January. P. 105576. https://doi.org/10.1016/j.jtice.2024.105576
- Hussain M.A., Ul Haq E., Munawar I. et al. // Ceram. Int. 2022. V. 48. № 10. P. 14481. https://doi.org/10.1016/j.ceramint.2022.01.341
- Fu Y., Mo A. // Nanoscale Res. Lett. 2018. V. 13. Art. 187. https://doi.org/10.1186/s11671-018-2597-z
- Garcia-Lobato M.A., Mtz-Enriquez A.I., Garcia C.R. et al. // Appl. Surf. Sci. 2019. V. 484. P. 975. https://doi.org/10.1016/j.apsusc.2019.04.108
- Awad N.K., Edwards S.L., Morsi Y.S. // Mater. Sci. Eng. 2017. V. 76. P. 1401. https://doi.org/10.1016/j.msec.2017.02.150
- Papynov E.K., Shichalin O.O., Belov A.A. et al. // J. Funct. Biomater. 2023. V. 14. № 5. P. 259. https://doi.org/10.3390/jfb14050259
- Papynov E., Shichalin O., Buravlev I. et al. // J. Funct. Biomater. 2020. V. 11. № 2. P. 41. https://doi.org/10.3390/jfb11020041
- Apanasevich V., Papynov E., Plekhova N. et al. // J. Funct. Biomater. 2020. V. 11. № 4. P. 68. https://doi.org/10.3390/JFB11040068
- Tecu C., Antoniac A., Goller G. et al. // Rev. Chim. 2018. V. 69. № 5. P. 1272. https://doi.org/10.37358/RC.18.5.6306
- Ingole V.H., Sathe B., Ghule A.V. // Bioactive ceramic composite material stability, characterization, and bonding to bone, in: Fundam. Biomater. Ceram. Elsevier, 2018. P. 273. https://doi.org/10.1016/B978-0-08-102203-0.00012-3
- Luginina M., Angioni D., Montinaro S. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 13. P. 4623. https://doi.org/10.1016/j.jeurceramsoc.2020.05.061
- Rastgoo M.J., Razavi M., Salahi E. et al. // Bull. Mater. Sci. 2019. V. 42. № 1. P. 1. https://doi.org/10.1007/s12034-018-1698-8
- Nath S., Tripathi R., Basu B. // Mater. Sci. Eng. 2009. V. 29. № 1. P. 97. https://doi.org/10.1016/j.msec.2008.05.019
Қосымша файлдар
