Formation of Layered Biocomposite as a Promising Basis for Metal-Ceramic Bone Implants

Abstract

The research is devoted to the development of a layered biocomposite in the form of a functional-gradient material (FGM) combining Ti-6Al-4V alloy and bioceramics based on titanium dioxide with hydroxyapatite, promising for use in metal-ceramic bone implants. The method of FGM formation overcoming the limitations of its components, such as low mechanical strength of bioceramics and lack of osteoinductivity in titanium medical alloys, is presented. In this work, a spark plasma sintering (SPS) technique was utilized to achieve a strong and unbreakable bond between the ceramic and alloy layers. The results showed that the phase composition of both materials remained stable during the heating process, and an intermediate layer of β-Ti was formed at the contact interface, which improved the mechanical strength of the joint. Microhardness tests confirmed the integrity of the composite with preservation of strength at the interface between the ceramic and alloy. The absence of defects and internal stresses at the boundaries of the formed joint testify to its high mechanical stability and demonstrate the potential of the method for possible practical application in order to create modern structurally strong implants with improved osseointegration function.

Full Text

Restricted Access

About the authors

A. A. Belov

Far Eastern Federal University

Author for correspondence.
Email: belov_aa@dvfu.ru
Russian Federation, 10, Ajax Bay, Russky Island, Vladivostok, 690922

O. V. Kapustina

Far Eastern Federal University

Email: belov_aa@dvfu.ru
Russian Federation, 10, Ajax Bay, Russky Island, Vladivostok, 690922

E. S. Kolodeznikov

Far Eastern Federal University

Email: belov_aa@dvfu.ru
Russian Federation, 10, Ajax Bay, Russky Island, Vladivostok, 690922

O. O. Shichalin

Far Eastern Federal University

Email: belov_aa@dvfu.ru
Russian Federation, 10, Ajax Bay, Russky Island, Vladivostok, 690922

A. N. Fedorets

Far Eastern Federal University

Email: belov_aa@dvfu.ru
Russian Federation, 10, Ajax Bay, Russky Island, Vladivostok, 690922

S. K. Zolotnikov

Far Eastern Federal University

Email: belov_aa@dvfu.ru
Russian Federation, 10, Ajax Bay, Russky Island, Vladivostok, 690922

E. K. Papynov

Far Eastern Federal University

Email: belov_aa@dvfu.ru
Russian Federation, 10, Ajax Bay, Russky Island, Vladivostok, 690922

References

  1. Ranjan N., Singh R., Ahuja I. // Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 2019. V. 233. № 7. P. 754. https://doi.org/10.1177/0954411919852811
  2. Oltean-Dan D., Dogaru G.-B., Jianu E.-M. et al. // Micromachines. 2021. V. 12. № 11. P. 1352. https://doi.org/10.3390/mi12111352
  3. Logesh M., Ahn S.-G., Choe H.-C. // J. Mater. Res. Technol. 2024. V. 33. P. 7620. https://doi.org/10.1016/j.jmrt.2024.11.114
  4. Hosseini M., Khalil-Allafi J., Safavi M.S. // J. Mater. Res. Technol. 2024. V. 33. № August. P. 4055. https://doi.org/10.1016/j.jmrt.2024.10.081
  5. Nisar S.S., Arun S., Toan N.K. et al. // J. Mater. Res. Technol. 2024. V. 31. № June. P. 1282. https://doi.org/10.1016/j.jmrt.2024.06.155
  6. Liu Y., Wang G., Zhao Y. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 5. P. 1995. https://doi.org/10.1016/j.jeurceramsoc.2021.12.063
  7. Zhou X., Han Y.H., Shen X. et al. // J. Nucl. Mater. 2015. V. 466. P. 322. https://doi.org/10.1016/j.jnucmat.2015.08.004
  8. Zhou X., Yang H., Chen F. et al. // Carbon N. Y. 2016. V. 102. P. 106. https://doi.org/10.1016/j.carbon.2016.02.036
  9. Zhao X., Duan L., Liu W. et al. // J. Eur. Ceram. Soc. 2019. V. 39. № 16. P. 5473. https://doi.org/10.1016/j.jeurceramsoc.2019.08.013
  10. Zhao X., Duan L., Wang Y. // J. Eur. Ceram. Soc. 2019. V. 39. № 5. P. 1757. https://doi.org/10.1016/j.jeurceramsoc.2019.01.020
  11. Tatarko P., Grasso S., Saunders T.G. et al. // J. Eur. Ceram. Soc. 2017. V. 37. № 13. P. 3841. https://doi.org/10.1016/j.jeurceramsoc.2017.05.016
  12. Zhao X., Duan L., Liu W. et al. // Ceram. Int. 2019. V. 45. № 17. P. 23111. https://doi.org/10.1016/j.ceramint.2019.08.005
  13. Zhou X., Han Y.-H., Shen X. et al. // J. Nucl. Mater. 2015. V. 466. P. 322. https://doi.org/10.1016/j.jnucmat.2015.08.004
  14. Tatarko P., Grasso S., Saunders T.G. et al. // J. Eur. Ceram. Soc. 2017. V. 37. № 13. P. 3841. https://doi.org/10.1016/j.jeurceramsoc.2017.05.016
  15. Rafiei M., Eivaz Mohammadloo H., Khorasani M. et al. // Heliyon. 2025. V. 11. № 2. P. E41813. https://doi.org/10.1016/j.heliyon.2025.e41813
  16. Gabor R., Cvrček L., Causidu S. et al. // Surf. Interfaces. 2021. V. 25. № December. 2020. V. 101209. https://doi.org/10.1016/j.surfin.2021.101209
  17. Al-Kaisy H.A., Issa R.A.H., Faheed N.K. et al. // Rev. Compos. Mater. Av. 2024. V. 34. № 2. P. 125. https://doi.org/10.18280/rcma.340201
  18. Ramasamy P., Sundharam S. // J. Aust. Ceram. Soc. 2021. V. 57. № 2. P. 605. https://doi.org/10.1007/s41779-021-00561-w
  19. Lin Y., Balbaa M., Zeng W. et al. // J. Mater. Eng. Perform. 2023. V. 33. № 18. P. 9664. https://doi.org/10.1007/s11665-023-08632-8
  20. Asgarian R., Khalghi A., Kiani Harchegani R. et al. // Appl. Phys. A: Mater. Sci. Process. 2021. V. 127. № 1. P. 1. https://doi.org/10.1007/s00339-020-04188-9
  21. Rodrigues L.F., Tronco M.C., Escobar C.F. et al. // Ceram. Int. 2019. V. 45. № 12. P. 14806. https://doi.org/10.1016/j.ceramint.2019.04.211
  22. Yang W., Han Q., Chen H. et al. // J. Mater. Sci. Technol. 2024. V. 188. P. 116. https://doi.org/10.1016/j.jmst.2023.10.061
  23. Abdullah Naji F.A., Murtaza Q., Niranjan M.S. // Precis. Eng. 2024. V. 88. P. 81. https://doi.org/10.1016/j.precisioneng.2024.01.019
  24. Qiu J., Ding Z., Yi Y. et al. // Mater. Today Commun. 2024. V. 38. P. 108146. https://doi.org/10.1016/j.mtcomm.2024.108146
  25. Navarro M., Michiardi A., Castaño O. et al. // J. R. Soc. Interface. 2008. V. 5. № 27. P. 1137. https://doi.org/10.1098/rsif.2008.0151
  26. Kumari R., Kumar S., Das A.K. et al. // Appl. Surf. Sci. Adv. 2024. V. 24. P. 100655. https://doi.org/10.1016/j.apsadv.2024.100655
  27. Pauline S.A., Karuppusamy I., Gopalsamy K. et al. // J. Taiwan Inst. Chem. Eng. 2024. V. 166. Part 2. № January. P. 105576. https://doi.org/10.1016/j.jtice.2024.105576
  28. Hussain M.A., Ul Haq E., Munawar I. et al. // Ceram. Int. 2022. V. 48. № 10. P. 14481. https://doi.org/10.1016/j.ceramint.2022.01.341
  29. Fu Y., Mo A. // Nanoscale Res. Lett. 2018. V. 13. Art. 187. https://doi.org/10.1186/s11671-018-2597-z
  30. Garcia-Lobato M.A., Mtz-Enriquez A.I., Garcia C.R. et al. // Appl. Surf. Sci. 2019. V. 484. P. 975. https://doi.org/10.1016/j.apsusc.2019.04.108
  31. Awad N.K., Edwards S.L., Morsi Y.S. // Mater. Sci. Eng. 2017. V. 76. P. 1401. https://doi.org/10.1016/j.msec.2017.02.150
  32. Papynov E.K., Shichalin O.O., Belov A.A. et al. // J. Funct. Biomater. 2023. V. 14. № 5. P. 259. https://doi.org/10.3390/jfb14050259
  33. Papynov E., Shichalin O., Buravlev I. et al. // J. Funct. Biomater. 2020. V. 11. № 2. P. 41. https://doi.org/10.3390/jfb11020041
  34. Apanasevich V., Papynov E., Plekhova N. et al. // J. Funct. Biomater. 2020. V. 11. № 4. P. 68. https://doi.org/10.3390/JFB11040068
  35. Tecu C., Antoniac A., Goller G. et al. // Rev. Chim. 2018. V. 69. № 5. P. 1272. https://doi.org/10.37358/RC.18.5.6306
  36. Ingole V.H., Sathe B., Ghule A.V. // Bioactive ceramic composite material stability, characterization, and bonding to bone, in: Fundam. Biomater. Ceram. Elsevier, 2018. P. 273. https://doi.org/10.1016/B978-0-08-102203-0.00012-3
  37. Luginina M., Angioni D., Montinaro S. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 13. P. 4623. https://doi.org/10.1016/j.jeurceramsoc.2020.05.061
  38. Rastgoo M.J., Razavi M., Salahi E. et al. // Bull. Mater. Sci. 2019. V. 42. № 1. P. 1. https://doi.org/10.1007/s12034-018-1698-8
  39. Nath S., Tripathi R., Basu B. // Mater. Sci. Eng. 2009. V. 29. № 1. P. 97. https://doi.org/10.1016/j.msec.2008.05.019

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of the experimental work on obtaining samples.

Download (252KB)
3. Fig. 2. Granulometric analysis of TiO2, HAP, TiO2-HAP 20%, TiO2-HAP 50% powders and their phase composition.

Download (518KB)
4. Fig. 3. Dilatometric curves of samples obtained by IPS method, reflecting the following dependences: a - shrinkage on time; b - shrinkage rate on time; c - shrinkage rate on temperature.

Download (290KB)
5. Fig. 4. Diffractograms of samples obtained by IPS method.

Download (143KB)
6. Fig. 5. SEM images of the initial powder materials.

Download (807KB)
7. Fig. 6. SEM images (a) and EDS analysis (b) of ceramic materials of TiO2-GAP 20% and TiO2-GAP 50% composition obtained by IPS method.

Download (619KB)
8. Fig. 7. SEM images, phase composition and EDS analysis of cross section of TiO2-HAP 20% and Ti-6Al-4V coupled sample.

Download (978KB)
9. Fig. 8. Box-and-whisker plot for Vickers microhardness values obtained on the surface of bioceramic samples of composition GAP, TiO2-GAP 20%, TiO2-GAP 50% (a) and on the cross-sectional surface of sample Ti-6Al-4V, TiO2-GAP 20% (b).

Download (247KB)

Copyright (c) 2025 Russian Academy of Sciences