Subsolidus Phase Equilibria in the Ni–Mn–Ga–Sb and Ni–Mn–In–Sb Systems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The analysis of phase equilibria in the Ni–Mn–Ga–Sb and Ni–Mn–In–Sb systems in the absence of melt is carried out. The method of topological modeling based on the concentration diagrams of the ternary systems Ni–Mn–Sb, Ni–Mn–Ga, Ni–Mn–In, Ni–Ga–Sb, Ni–In–Sb, Mn–Ga–Sb, Mn–In–Sb and fragmentary experimental data on phase equilibria involving the Heusler intermetallics Ni2Mn1+x(Ga,Sb)1–x and Ni2Mn1+x(In,Sb)1–x are constructed isobaric-isothermal subsolidus concentration diagrams of the quaternary systems Ni–Mn–Ga–Sb and Ni–Mn–In–Sb. Their main differences are shown.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Smirnova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991

G. Nipan

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991

O. Pashkova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991

G. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991

Әдебиет тізімі

  1. Tian F., Zeng Y., Xu M. et al. // Appl. Phys. Lett. 2015. V. 107. № 1. P. 012406. https://doi.org/10.1063/1.4926411
  2. Tian F., Cao K., Zhang Y. et al. // Sci. Rep. 2016. V. 6. P. 30801. https://doi.org/10.1038/srep30801
  3. Liu Z.H., Askoy S., Acet M. // J. Appl. Phys. 2009. V. 105. № 3. Р. 033913. https://doi.org/10.1063/1.3075821
  4. Liu Z., Wu Z., Yang H. et al. // Intermetallics. 2010. V. 18. № 8. P. 1690. https://doi.org/ 10.1016/j.intermet.2010.05.007
  5. Yu S.Y., Yan S.S., Zhao L. et al. // J. Magn. Magn. Mater. 2010. V. 322. № 17. P. 2541. https://doi.org/10.1016/j.jmmm.2010.03.017
  6. Yu S.Y., Wei J.J., Kang S.S. et al. // J. Alloys Compd. 2014. V. 586. P. 328. https://doi.org/10.1016/j.jallcom.2013.10.072
  7. Liu H., Liu Z., Li G., Ma X. // Solid State Commun. 2016. V. 243. P. 23. https://doi.org/10.1016/j.ssc.2016.06.005
  8. Zhang Y., Wang J., Ke X. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 27. P. 18484. https://doi.org/10.1039/C8CP02720J
  9. Tian F., Cao K., Chen K. et al. // J. Appl. Phys. 2024. V. 135. Р. 023904. https://doi.org/10.1063/5.0189339
  10. Krenke T., Acet M., Wassermann E.F. et al. // Phys. Rev. B. 2006. V. 73. Р. 174413. https://doi.org/10.1103/PhysRevB.73.174413
  11. Guo C., Du Z. // Intermetallics. 2005. V. 13. № 5. P. 525. https://doi.org/10.1016/j.intermet.2004.09.002
  12. Franke P. // Int. J. Mater. Res. 2007. V. 98. № 10. P. 954. https://doi.org/10.3139/146.101558
  13. Hao L., Bigdeli S., Xiong W. // J. Phase Equilib. Diff. 2024. V. 45. № 6. P. 1182. https://doi.org/10.1007/s11669-024-01165-0
  14. Zhang Y., Li C., Du Z., Guo C. // CALPHAD. 2008. V. 32. № 2. P. 378. https://doi.org/10.1016/j.calphad.2008.02.001
  15. Cao Z., Takaku Y., Ohnuma I. et al. // Rare Met. 2008. V. 27. № 4. P. 384. https://doi.org/10.1016/s1001-0521(08)60150-3
  16. Okamoto H. // J. Phase Equilib. Diff. 2009. V. 30. № 3. P. 301. https://doi.org/10.1007/s11669-009-9513-2
  17. Kainzbauer P., Richter K.W., Ipser H. // J. Phase Equilib. 2016. V. 37. № 4. P. 459. https://doi.org/10.1007/s11669-016-0470-2
  18. Yuan W.X., Qiao Z.Y., Ipser H., Eriksson G. // J. Phase Equilib. 2004. V. 25. № 1. P. 68. https://doi.org/10.1361/10549710417696
  19. Okamoto H. // J. Phase Equilib. 2010. V. 31. № 6. P. 575. https://doi.org/10.1007/s11669-010-9785-6
  20. Cao Z-M., Shi X., Xie W. et al. // Rare Met. 2015. V. 34. № 12. P. 864. https://doi.org/10.1007/s12598-014-0365-5
  21. Chang C.-C. B., Kao C.R. // Materials. 2024. V. 17. P. 883. https://doi.org/10.3390/ma17040883
  22. Hao L., Shen C., Fortunato N.M. et al. // CALPHAD. 2025. V. 88. P. 102797. https://doi.org/10.1016/j.calphad.2024.102797
  23. Okamoto H. // J. Phase Equilib. 2003. V. 24. № 4. P. 379. https://doi.org/10.1361/105497103770330479
  24. Minakuchi K., Umetsu R.Y., Ishida K., Kainuma R. // J. Alloys. Compd. 2012. V. 537. P. 332. https://doi.org/10.1016/j.jallcom.2012.04.065
  25. Tillard M., Belin C. // Intermetallics. 2012. V. 29. P. 147. https://doi.org/10.1016/j.intermet.2012.05.011
  26. Okamoto H. // J. Phase Equilib. Diff. 2014. V. 35. № 1. P. 105. https://doi.org/10.1007/s11669-013-0262-x
  27. Hao L., Xiong W. // CALPHAD. 2020. V. 68. P. 101722. https://doi.org/10.1016/j.calphad.2019.101722
  28. Wang L.Y., Wang J., Zhu C.F. et al. // Thermochim. Acta. 2015. V. 607. P. 74. https://doi.org/10.1016/j.tca.2015.03.022
  29. Srinivaas M.R., Kumar K.C.H. // CALPHAD. 2022. V. 76. P. 102389. https://doi.org/10.1016/j.calphad.2021.102389
  30. Lysenko V.A. // J. Alloys. Compd. 2019. V. 776. P. 850. https://doi.org/10.1016/j.jallcom.2018.10.223
  31. Miyamoto T., Nagasako M., Kainuma R. // J. Alloys Compd. 2019. V. 772. P. 64. https://doi.org/10.1016/j.jallcom.2018.09.035
  32. Ao W.-Q., Yu H.-Z., Liu F.-L. et al. // J. Min. Metall., Sect. B: Metall. 2019. V. 55. № 2. P. 147. https://doi.org/10.2298/JMMB181104019A
  33. Wedel C., Itagaki K. // J. Phase Equilib. 2001. V. 22. № 3. P. 324. https://doi.org/10.1361/105497101770338833
  34. Gupta K.P. // J. Phase Equilib. Diff. 2001. V. 29. № 1. P. 101. https://doi.org/10.1007/s11669-007-9017-x
  35. Yang S., Wang C., Liu X. // Intermetallics. 2012. V. 25. P. 101. https://doi.org/10.1016/j.intermet.2011.12.009
  36. Tiwari N., Pal V., Das S., Paliwal M. // J. Electron. Mater. 2024. V. 53. № 4. P. 1773. https://doi.org/10.1007/s11664-023-10882-0
  37. Miyamoto T., Nagasako M., Kainuma R. // J. Alloys. Compd. 2013. V. 549. P. 57. https://doi.org/10.1016/j.jallcom.2012.08.128
  38. Le Clanche M.C., Députier S., Jégaden J.C. et al. // J. Alloys Compd. 1994. V. 206. P. 21. https://doi.org/10.1016/0925-8388(94)90006-X
  39. Markovski S.L., Micke K., Richter K.W. et al. // J. Alloys Compd. 2000. V. 302. P. 128. https://doi.org/10.1016/S0925-8388(99)00575-7
  40. Roy N., Kumari S., Sikdar R. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 14. P. 1410. https://doi.org/10.1002/ejic.202100064
  41. Cao Z., Xie W., Wang K. et al. // J. Electron. Mater. 2013. V. 42. № 8. P. 2615. https://doi.org/10.1007/s11664-013-2599-7
  42. Маренкин С.Ф., Трухан В.М., Труханов С.В. и др. // Журн. неорган. химии. 2013. Т. 58. № 11. С. 1478. https://doi.org/10.7868/S0044457X13110135
  43. Маренкин С.Ф., Аронов А.Н., Федорченко И.В. и др. // Патент 2019. RU 2700896 C1.
  44. Marenkin S.F., Korkin D.E., Jaloliddinzoda M. et al. // Mater. Chem. Phys. 2023. V. 300. Р. 127547. https://doi.org/10.1016/j.matchemphys.2023.127549
  45. Сафаралиев Т.И., Вагабова Л.К. // Изв. АН СССР. Сер. Неорган. материалы. 1988. Т. 24. С. 457.
  46. Liu W.E., Mohney S.E. // Mater. Sci. Eng. B. 2003. V. 103. P. 189. https://doi.org/10.1016/S0921-5107(03)00214-9
  47. Seshu Bai V., Rama Rao K.V.S. // Phys. Status Solidi A. 1982. V. 73. P. K303.
  48. Pashkova O.N., Oveshnikov L.N., Ril A.I. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 7. P. 965. https://doi.org/10.1134/S003602362460076X
  49. Смирнова М.Н., Нипан Г.Д., Пашкова О.Н., Никифорова Г.Е. // Докл. РАН. Химия, науки о материалах. 2024. Т. 519. С. 32.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Diagrams of ternary systems in Ni-Mn-Ga-Sb (a) and Ni-Mn-In-Sb (b) tetrahedra.

Жүктеу (314KB)
3. Fig. 2. Isobaric-isothermal diagrams of Ni-Mn-Ga-Sb (a) and Ni-Mn-In-Sb (b) systems.

Жүктеу (344KB)

© Russian Academy of Sciences, 2025