Subsolidus Phase Equilibria in the Ni–Mn–Ga–Sb and Ni–Mn–In–Sb Systems
- Авторлар: Smirnova M.N.1, Buzanov G.A.1, Nipan G.D.1, Pashkova O.N.1, Nikiforova G.E.1
-
Мекемелер:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Шығарылым: Том 70, № 6 (2025)
- Беттер: 829-835
- Бөлім: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/686419
- DOI: https://doi.org/10.31857/S0044457X25060119
- EDN: https://elibrary.ru/ICEMKU
- ID: 686419
Дәйексөз келтіру
Аннотация
The analysis of phase equilibria in the Ni–Mn–Ga–Sb and Ni–Mn–In–Sb systems in the absence of melt is carried out. The method of topological modeling based on the concentration diagrams of the ternary systems Ni–Mn–Sb, Ni–Mn–Ga, Ni–Mn–In, Ni–Ga–Sb, Ni–In–Sb, Mn–Ga–Sb, Mn–In–Sb and fragmentary experimental data on phase equilibria involving the Heusler intermetallics Ni2Mn1+x(Ga,Sb)1–x and Ni2Mn1+x(In,Sb)1–x are constructed isobaric-isothermal subsolidus concentration diagrams of the quaternary systems Ni–Mn–Ga–Sb and Ni–Mn–In–Sb. Their main differences are shown.
Негізгі сөздер
Толық мәтін

Авторлар туралы
M. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991
G. Buzanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991
G. Nipan
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991
O. Pashkova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991
G. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnovamn@igic.ras.ru
Ресей, 31, Leninsky Ave., Moscow, 119991
Әдебиет тізімі
- Tian F., Zeng Y., Xu M. et al. // Appl. Phys. Lett. 2015. V. 107. № 1. P. 012406. https://doi.org/10.1063/1.4926411
- Tian F., Cao K., Zhang Y. et al. // Sci. Rep. 2016. V. 6. P. 30801. https://doi.org/10.1038/srep30801
- Liu Z.H., Askoy S., Acet M. // J. Appl. Phys. 2009. V. 105. № 3. Р. 033913. https://doi.org/10.1063/1.3075821
- Liu Z., Wu Z., Yang H. et al. // Intermetallics. 2010. V. 18. № 8. P. 1690. https://doi.org/ 10.1016/j.intermet.2010.05.007
- Yu S.Y., Yan S.S., Zhao L. et al. // J. Magn. Magn. Mater. 2010. V. 322. № 17. P. 2541. https://doi.org/10.1016/j.jmmm.2010.03.017
- Yu S.Y., Wei J.J., Kang S.S. et al. // J. Alloys Compd. 2014. V. 586. P. 328. https://doi.org/10.1016/j.jallcom.2013.10.072
- Liu H., Liu Z., Li G., Ma X. // Solid State Commun. 2016. V. 243. P. 23. https://doi.org/10.1016/j.ssc.2016.06.005
- Zhang Y., Wang J., Ke X. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 27. P. 18484. https://doi.org/10.1039/C8CP02720J
- Tian F., Cao K., Chen K. et al. // J. Appl. Phys. 2024. V. 135. Р. 023904. https://doi.org/10.1063/5.0189339
- Krenke T., Acet M., Wassermann E.F. et al. // Phys. Rev. B. 2006. V. 73. Р. 174413. https://doi.org/10.1103/PhysRevB.73.174413
- Guo C., Du Z. // Intermetallics. 2005. V. 13. № 5. P. 525. https://doi.org/10.1016/j.intermet.2004.09.002
- Franke P. // Int. J. Mater. Res. 2007. V. 98. № 10. P. 954. https://doi.org/10.3139/146.101558
- Hao L., Bigdeli S., Xiong W. // J. Phase Equilib. Diff. 2024. V. 45. № 6. P. 1182. https://doi.org/10.1007/s11669-024-01165-0
- Zhang Y., Li C., Du Z., Guo C. // CALPHAD. 2008. V. 32. № 2. P. 378. https://doi.org/10.1016/j.calphad.2008.02.001
- Cao Z., Takaku Y., Ohnuma I. et al. // Rare Met. 2008. V. 27. № 4. P. 384. https://doi.org/10.1016/s1001-0521(08)60150-3
- Okamoto H. // J. Phase Equilib. Diff. 2009. V. 30. № 3. P. 301. https://doi.org/10.1007/s11669-009-9513-2
- Kainzbauer P., Richter K.W., Ipser H. // J. Phase Equilib. 2016. V. 37. № 4. P. 459. https://doi.org/10.1007/s11669-016-0470-2
- Yuan W.X., Qiao Z.Y., Ipser H., Eriksson G. // J. Phase Equilib. 2004. V. 25. № 1. P. 68. https://doi.org/10.1361/10549710417696
- Okamoto H. // J. Phase Equilib. 2010. V. 31. № 6. P. 575. https://doi.org/10.1007/s11669-010-9785-6
- Cao Z-M., Shi X., Xie W. et al. // Rare Met. 2015. V. 34. № 12. P. 864. https://doi.org/10.1007/s12598-014-0365-5
- Chang C.-C. B., Kao C.R. // Materials. 2024. V. 17. P. 883. https://doi.org/10.3390/ma17040883
- Hao L., Shen C., Fortunato N.M. et al. // CALPHAD. 2025. V. 88. P. 102797. https://doi.org/10.1016/j.calphad.2024.102797
- Okamoto H. // J. Phase Equilib. 2003. V. 24. № 4. P. 379. https://doi.org/10.1361/105497103770330479
- Minakuchi K., Umetsu R.Y., Ishida K., Kainuma R. // J. Alloys. Compd. 2012. V. 537. P. 332. https://doi.org/10.1016/j.jallcom.2012.04.065
- Tillard M., Belin C. // Intermetallics. 2012. V. 29. P. 147. https://doi.org/10.1016/j.intermet.2012.05.011
- Okamoto H. // J. Phase Equilib. Diff. 2014. V. 35. № 1. P. 105. https://doi.org/10.1007/s11669-013-0262-x
- Hao L., Xiong W. // CALPHAD. 2020. V. 68. P. 101722. https://doi.org/10.1016/j.calphad.2019.101722
- Wang L.Y., Wang J., Zhu C.F. et al. // Thermochim. Acta. 2015. V. 607. P. 74. https://doi.org/10.1016/j.tca.2015.03.022
- Srinivaas M.R., Kumar K.C.H. // CALPHAD. 2022. V. 76. P. 102389. https://doi.org/10.1016/j.calphad.2021.102389
- Lysenko V.A. // J. Alloys. Compd. 2019. V. 776. P. 850. https://doi.org/10.1016/j.jallcom.2018.10.223
- Miyamoto T., Nagasako M., Kainuma R. // J. Alloys Compd. 2019. V. 772. P. 64. https://doi.org/10.1016/j.jallcom.2018.09.035
- Ao W.-Q., Yu H.-Z., Liu F.-L. et al. // J. Min. Metall., Sect. B: Metall. 2019. V. 55. № 2. P. 147. https://doi.org/10.2298/JMMB181104019A
- Wedel C., Itagaki K. // J. Phase Equilib. 2001. V. 22. № 3. P. 324. https://doi.org/10.1361/105497101770338833
- Gupta K.P. // J. Phase Equilib. Diff. 2001. V. 29. № 1. P. 101. https://doi.org/10.1007/s11669-007-9017-x
- Yang S., Wang C., Liu X. // Intermetallics. 2012. V. 25. P. 101. https://doi.org/10.1016/j.intermet.2011.12.009
- Tiwari N., Pal V., Das S., Paliwal M. // J. Electron. Mater. 2024. V. 53. № 4. P. 1773. https://doi.org/10.1007/s11664-023-10882-0
- Miyamoto T., Nagasako M., Kainuma R. // J. Alloys. Compd. 2013. V. 549. P. 57. https://doi.org/10.1016/j.jallcom.2012.08.128
- Le Clanche M.C., Députier S., Jégaden J.C. et al. // J. Alloys Compd. 1994. V. 206. P. 21. https://doi.org/10.1016/0925-8388(94)90006-X
- Markovski S.L., Micke K., Richter K.W. et al. // J. Alloys Compd. 2000. V. 302. P. 128. https://doi.org/10.1016/S0925-8388(99)00575-7
- Roy N., Kumari S., Sikdar R. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 14. P. 1410. https://doi.org/10.1002/ejic.202100064
- Cao Z., Xie W., Wang K. et al. // J. Electron. Mater. 2013. V. 42. № 8. P. 2615. https://doi.org/10.1007/s11664-013-2599-7
- Маренкин С.Ф., Трухан В.М., Труханов С.В. и др. // Журн. неорган. химии. 2013. Т. 58. № 11. С. 1478. https://doi.org/10.7868/S0044457X13110135
- Маренкин С.Ф., Аронов А.Н., Федорченко И.В. и др. // Патент 2019. RU 2700896 C1.
- Marenkin S.F., Korkin D.E., Jaloliddinzoda M. et al. // Mater. Chem. Phys. 2023. V. 300. Р. 127547. https://doi.org/10.1016/j.matchemphys.2023.127549
- Сафаралиев Т.И., Вагабова Л.К. // Изв. АН СССР. Сер. Неорган. материалы. 1988. Т. 24. С. 457.
- Liu W.E., Mohney S.E. // Mater. Sci. Eng. B. 2003. V. 103. P. 189. https://doi.org/10.1016/S0921-5107(03)00214-9
- Seshu Bai V., Rama Rao K.V.S. // Phys. Status Solidi A. 1982. V. 73. P. K303.
- Pashkova O.N., Oveshnikov L.N., Ril A.I. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 7. P. 965. https://doi.org/10.1134/S003602362460076X
- Смирнова М.Н., Нипан Г.Д., Пашкова О.Н., Никифорова Г.Е. // Докл. РАН. Химия, науки о материалах. 2024. Т. 519. С. 32.
