Subsolidus Phase Equilibria in the Ni–Mn–Ga–Sb and Ni–Mn–In–Sb Systems
- 作者: Smirnova M.N.1, Buzanov G.A.1, Nipan G.D.1, Pashkova O.N.1, Nikiforova G.E.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- 期: 卷 70, 编号 6 (2025)
- 页面: 829-835
- 栏目: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://kazanmedjournal.ru/0044-457X/article/view/686419
- DOI: https://doi.org/10.31857/S0044457X25060119
- EDN: https://elibrary.ru/ICEMKU
- ID: 686419
如何引用文章
详细
The analysis of phase equilibria in the Ni–Mn–Ga–Sb and Ni–Mn–In–Sb systems in the absence of melt is carried out. The method of topological modeling based on the concentration diagrams of the ternary systems Ni–Mn–Sb, Ni–Mn–Ga, Ni–Mn–In, Ni–Ga–Sb, Ni–In–Sb, Mn–Ga–Sb, Mn–In–Sb and fragmentary experimental data on phase equilibria involving the Heusler intermetallics Ni2Mn1+x(Ga,Sb)1–x and Ni2Mn1+x(In,Sb)1–x are constructed isobaric-isothermal subsolidus concentration diagrams of the quaternary systems Ni–Mn–Ga–Sb and Ni–Mn–In–Sb. Their main differences are shown.
全文:

作者简介
M. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: smirnovamn@igic.ras.ru
俄罗斯联邦, 31, Leninsky Ave., Moscow, 119991
G. Buzanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnovamn@igic.ras.ru
俄罗斯联邦, 31, Leninsky Ave., Moscow, 119991
G. Nipan
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnovamn@igic.ras.ru
俄罗斯联邦, 31, Leninsky Ave., Moscow, 119991
O. Pashkova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnovamn@igic.ras.ru
俄罗斯联邦, 31, Leninsky Ave., Moscow, 119991
G. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: smirnovamn@igic.ras.ru
俄罗斯联邦, 31, Leninsky Ave., Moscow, 119991
参考
- Tian F., Zeng Y., Xu M. et al. // Appl. Phys. Lett. 2015. V. 107. № 1. P. 012406. https://doi.org/10.1063/1.4926411
- Tian F., Cao K., Zhang Y. et al. // Sci. Rep. 2016. V. 6. P. 30801. https://doi.org/10.1038/srep30801
- Liu Z.H., Askoy S., Acet M. // J. Appl. Phys. 2009. V. 105. № 3. Р. 033913. https://doi.org/10.1063/1.3075821
- Liu Z., Wu Z., Yang H. et al. // Intermetallics. 2010. V. 18. № 8. P. 1690. https://doi.org/ 10.1016/j.intermet.2010.05.007
- Yu S.Y., Yan S.S., Zhao L. et al. // J. Magn. Magn. Mater. 2010. V. 322. № 17. P. 2541. https://doi.org/10.1016/j.jmmm.2010.03.017
- Yu S.Y., Wei J.J., Kang S.S. et al. // J. Alloys Compd. 2014. V. 586. P. 328. https://doi.org/10.1016/j.jallcom.2013.10.072
- Liu H., Liu Z., Li G., Ma X. // Solid State Commun. 2016. V. 243. P. 23. https://doi.org/10.1016/j.ssc.2016.06.005
- Zhang Y., Wang J., Ke X. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 27. P. 18484. https://doi.org/10.1039/C8CP02720J
- Tian F., Cao K., Chen K. et al. // J. Appl. Phys. 2024. V. 135. Р. 023904. https://doi.org/10.1063/5.0189339
- Krenke T., Acet M., Wassermann E.F. et al. // Phys. Rev. B. 2006. V. 73. Р. 174413. https://doi.org/10.1103/PhysRevB.73.174413
- Guo C., Du Z. // Intermetallics. 2005. V. 13. № 5. P. 525. https://doi.org/10.1016/j.intermet.2004.09.002
- Franke P. // Int. J. Mater. Res. 2007. V. 98. № 10. P. 954. https://doi.org/10.3139/146.101558
- Hao L., Bigdeli S., Xiong W. // J. Phase Equilib. Diff. 2024. V. 45. № 6. P. 1182. https://doi.org/10.1007/s11669-024-01165-0
- Zhang Y., Li C., Du Z., Guo C. // CALPHAD. 2008. V. 32. № 2. P. 378. https://doi.org/10.1016/j.calphad.2008.02.001
- Cao Z., Takaku Y., Ohnuma I. et al. // Rare Met. 2008. V. 27. № 4. P. 384. https://doi.org/10.1016/s1001-0521(08)60150-3
- Okamoto H. // J. Phase Equilib. Diff. 2009. V. 30. № 3. P. 301. https://doi.org/10.1007/s11669-009-9513-2
- Kainzbauer P., Richter K.W., Ipser H. // J. Phase Equilib. 2016. V. 37. № 4. P. 459. https://doi.org/10.1007/s11669-016-0470-2
- Yuan W.X., Qiao Z.Y., Ipser H., Eriksson G. // J. Phase Equilib. 2004. V. 25. № 1. P. 68. https://doi.org/10.1361/10549710417696
- Okamoto H. // J. Phase Equilib. 2010. V. 31. № 6. P. 575. https://doi.org/10.1007/s11669-010-9785-6
- Cao Z-M., Shi X., Xie W. et al. // Rare Met. 2015. V. 34. № 12. P. 864. https://doi.org/10.1007/s12598-014-0365-5
- Chang C.-C. B., Kao C.R. // Materials. 2024. V. 17. P. 883. https://doi.org/10.3390/ma17040883
- Hao L., Shen C., Fortunato N.M. et al. // CALPHAD. 2025. V. 88. P. 102797. https://doi.org/10.1016/j.calphad.2024.102797
- Okamoto H. // J. Phase Equilib. 2003. V. 24. № 4. P. 379. https://doi.org/10.1361/105497103770330479
- Minakuchi K., Umetsu R.Y., Ishida K., Kainuma R. // J. Alloys. Compd. 2012. V. 537. P. 332. https://doi.org/10.1016/j.jallcom.2012.04.065
- Tillard M., Belin C. // Intermetallics. 2012. V. 29. P. 147. https://doi.org/10.1016/j.intermet.2012.05.011
- Okamoto H. // J. Phase Equilib. Diff. 2014. V. 35. № 1. P. 105. https://doi.org/10.1007/s11669-013-0262-x
- Hao L., Xiong W. // CALPHAD. 2020. V. 68. P. 101722. https://doi.org/10.1016/j.calphad.2019.101722
- Wang L.Y., Wang J., Zhu C.F. et al. // Thermochim. Acta. 2015. V. 607. P. 74. https://doi.org/10.1016/j.tca.2015.03.022
- Srinivaas M.R., Kumar K.C.H. // CALPHAD. 2022. V. 76. P. 102389. https://doi.org/10.1016/j.calphad.2021.102389
- Lysenko V.A. // J. Alloys. Compd. 2019. V. 776. P. 850. https://doi.org/10.1016/j.jallcom.2018.10.223
- Miyamoto T., Nagasako M., Kainuma R. // J. Alloys Compd. 2019. V. 772. P. 64. https://doi.org/10.1016/j.jallcom.2018.09.035
- Ao W.-Q., Yu H.-Z., Liu F.-L. et al. // J. Min. Metall., Sect. B: Metall. 2019. V. 55. № 2. P. 147. https://doi.org/10.2298/JMMB181104019A
- Wedel C., Itagaki K. // J. Phase Equilib. 2001. V. 22. № 3. P. 324. https://doi.org/10.1361/105497101770338833
- Gupta K.P. // J. Phase Equilib. Diff. 2001. V. 29. № 1. P. 101. https://doi.org/10.1007/s11669-007-9017-x
- Yang S., Wang C., Liu X. // Intermetallics. 2012. V. 25. P. 101. https://doi.org/10.1016/j.intermet.2011.12.009
- Tiwari N., Pal V., Das S., Paliwal M. // J. Electron. Mater. 2024. V. 53. № 4. P. 1773. https://doi.org/10.1007/s11664-023-10882-0
- Miyamoto T., Nagasako M., Kainuma R. // J. Alloys. Compd. 2013. V. 549. P. 57. https://doi.org/10.1016/j.jallcom.2012.08.128
- Le Clanche M.C., Députier S., Jégaden J.C. et al. // J. Alloys Compd. 1994. V. 206. P. 21. https://doi.org/10.1016/0925-8388(94)90006-X
- Markovski S.L., Micke K., Richter K.W. et al. // J. Alloys Compd. 2000. V. 302. P. 128. https://doi.org/10.1016/S0925-8388(99)00575-7
- Roy N., Kumari S., Sikdar R. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 14. P. 1410. https://doi.org/10.1002/ejic.202100064
- Cao Z., Xie W., Wang K. et al. // J. Electron. Mater. 2013. V. 42. № 8. P. 2615. https://doi.org/10.1007/s11664-013-2599-7
- Маренкин С.Ф., Трухан В.М., Труханов С.В. и др. // Журн. неорган. химии. 2013. Т. 58. № 11. С. 1478. https://doi.org/10.7868/S0044457X13110135
- Маренкин С.Ф., Аронов А.Н., Федорченко И.В. и др. // Патент 2019. RU 2700896 C1.
- Marenkin S.F., Korkin D.E., Jaloliddinzoda M. et al. // Mater. Chem. Phys. 2023. V. 300. Р. 127547. https://doi.org/10.1016/j.matchemphys.2023.127549
- Сафаралиев Т.И., Вагабова Л.К. // Изв. АН СССР. Сер. Неорган. материалы. 1988. Т. 24. С. 457.
- Liu W.E., Mohney S.E. // Mater. Sci. Eng. B. 2003. V. 103. P. 189. https://doi.org/10.1016/S0921-5107(03)00214-9
- Seshu Bai V., Rama Rao K.V.S. // Phys. Status Solidi A. 1982. V. 73. P. K303.
- Pashkova O.N., Oveshnikov L.N., Ril A.I. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 7. P. 965. https://doi.org/10.1134/S003602362460076X
- Смирнова М.Н., Нипан Г.Д., Пашкова О.Н., Никифорова Г.Е. // Докл. РАН. Химия, науки о материалах. 2024. Т. 519. С. 32.
补充文件
