Synthesis of zinc oxide nanoparticles in the processing of galvanic sludge

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For the first time, the possibility of synthesizing zinc oxide nanoparticles during the processing of galvanic sludge using microemulsion leaching and subsequent precipitation of nanoparticles in this microemulsion has been demonstrated. Using model systems with ZnO and Zn(OH)2, the leaching of zinc into reverse microemulsions is studied in the system sodium dodecyl sulfate – butanol-1 – kerosene – water, containing extractants di-(2-ethylhexyl)phosphoric acid, caproic acid or a mixture of tributyl phosphate and acetic acid. The best leaching results are observed for microemulsion with di-(2-ethylhexyl)phosphoric acid. Using the model system “zinc hydroxide contaminated with iron (III) hydroxide,” the possibility of selective extraction of zinc into a microemulsion is shown. A method for the synthesis of nanoparticles has been developed, which includes microemulsion leaching of zinc, separation of unreacted solid phase, precipitation of ZnO nanoparticles from the microemulsion with an aqueous NaOH solution, separation of the precipitate, washing and drying. Using a model system with ZnO, spherical nanoparticles with a diameter of 34 ± 9 nm (according to transmission electron microscopy) were synthesized by this method; X-ray diffraction analysis showed that ZnO was obtained.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Murashova

Mendeleyev University of Chemical Technology of Russia

Хат алмасуға жауапты Автор.
Email: namur_home@mail.ru
Ресей, Moscow, 125047

M. Kuptsova

Mendeleyev University of Chemical Technology of Russia

Email: namur_home@mail.ru
Ресей, Moscow, 125047

P. Tokarev

Mendeleyev University of Chemical Technology of Russia

Email: namur_home@mail.ru
Ресей, Moscow, 125047

Әдебиет тізімі

  1. Систер В.Г., Клушин В.Н., Родионов А.И. Переработка и обезвреживание осадков и шламов. М.: Дрофа, 2008. 248 с.
  2. Информационно-технический справочник по наилучшим доступным технологиям ИТС 36-2017 “Обработка поверхностей металлов и пластмасс с использованием электролитических и химических процессов”. М.: Бюро НДТ, 2017. 228 с.
  3. Jha M.K., Kumar V., Singh R.J. // Resour. Conserv. Recycl. 2001. V. 33. № 1. P. 1. https://doi.org/10.1016/S0921-3449(00)00095-1
  4. Krishnan S., Zulkapli N.S., Kamyab H. et al. // Environ. Technol. Innovation. 2021. V. 22. P. 101525. https://doi.org/10.1016/j.eti.2021.101525
  5. Lobato N.C.C., Villegas E.A., Mansur M.B. // Resour. Conserv. Recycl. 2015. V. 102. P. 49. https://doi.org/10.1016/j.resconrec.2015.05.025
  6. Brar K.K., Magdouli S., Othmani A. et al. // Environ. Res. 2022. V. 207. P. 112202. https://doi.org/10.1016/j.envres.2021.112202
  7. Hernández-Saravia L.P., Carmona E.R., Villacorta A. et al. // Green Chem. Lett. Rev. 2023. V. 16. № 1. P. 2260401. https://doi.org/10.1080/17518253.2023.2260401
  8. Deep A., Sharma A.L., Mohanta G.C. et al. // Waste Manage. 2016. V. 51. P. 190. https://doi.org/10.1016/j.wasman.2016.01.033
  9. Томина Е.В., Дмитренков А.И., Жужукин К.В. // Изв. вузов. Лесной журн. 2022. № 4. С. 173. https://doi.org/10.37482/0536-1036-2022-4-173-184
  10. Серцова А.А., Маракулин С.И., Юртов Е.В. // Рос. хим. журн. (Журн. Рос. хим. об-ва им. Д.И. Менделеева). 2015. Т. 59. № 3. С. 78.
  11. Kumar M., Bansal M., Garg R. // Mater. Today: Proc. 2021. V. 43. № 2. P. 892. https://doi.org/10.1016/j.matpr.2020.07.215
  12. Бакина О.В., Чжоу В.Р., Иванова Л.Ю. и др. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 401. https://doi.org/10.31857/S0044457X22601249
  13. Jiang Z., Liu B., Yu L. et al. // J. Alloys Compd. 2023. V. 956. P. 170316. https://doi.org/10.1016/j.jallcom.2023.170316
  14. Rakshir A.K., Naskar B., Moulik S.P. // Current Science. 2019. V. 116. № 6. P. 898. https://doi.org/10.18520/cs/v116/i6/898-912
  15. Jalali-Jivan M., Garavand F., Jafari S.M. // Adv. Colloid Interface Sci. 2020. V. 283. P. 102227. https://doi.org/10.1016/j.cis.2020.102227
  16. Мурашова Н.М., Купцова М.Ю. // Хим. пром. сегодня. 2019. № 6. С. 64.
  17. Товстун С.А., Разумов В.Ф. // Успехи химии. 2011. Т. 80. № 10. С. 966. https://doi.org/10.1070/RC2011v080n10ABEH004154
  18. Hingorani S., Pillai V., Kumar P. et al. // Mater. Res. Bull. 1993. V. 28. № 12. P. 1303. https://doi.org/10.1016/0025-5408(93)90178-G
  19. Юртов Е.В., Мурашова Н.М. // Хим. технология. 2010. Т. 11. № 8. С. 479.
  20. Murashova N.M., Levchishin S.Yu., Yurtov E.V. // Hydrometallurgy. 2018. V. 175. P. 278. https://doi.org/10.1016/j.hydromet.2017.12.012
  21. Плетнев И.В., Смирнова С.В., Шаров А.В. и др. // Успехи химии. 2021. Т. 90. № 9. С. 1109. https://doi.org/10.1070/RCR5007?locatt=label:RUSSIAN
  22. Мурашова Н.М., Левчишин С.Ю., Юртов Е.В. // Хим. технология. 2011. Т. 12. № 7. С. 405.
  23. Полякова А.С., Мурашова Н.М., Юртов Е.В. // Журн. прикл. химии. 2020. Т. 93. № 2. С. 249. https://doi.org/10.31857/S0044461820020139
  24. Solvent Extraction Principles and Practice / Eds. Rydberg J., Cox M., Musikas C., Choppin G.R. N.Y., Basel. 2004. 723 p.
  25. Silva J.E., Paiva A.P., Soares D. et al. // J. Hazard. Mater. 2005. V. 120. № 1–3. P. 113. https://doi.org/10.1016/j.jhazmat.2004.12.008
  26. Pereira D.D., Rocha S.D.F., Mansur M.B. // Sep. Purif. Technol. 2007. V. 53. № 1. P. 89. https://doi.org/10.1016/j.seppur.2006.06.013
  27. Vahidi E., Rashchi F., Moradkhani D. // Miner. Eng. 2009. V. 22. № 2. P. 204. https://doi.org/10.1016/j.mineng.2008.05.002
  28. Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1000. https://doi.org/10.31857/S0044457X22070091
  29. Чекмарев А.М., Синегрибова О.А., Кушнерев А.В и др. // Коллоид. журн. 1997. Т. 59. № 3. С. 399.
  30. Мурашова Н.М., Левчишин С.Ю., Юртов Е.В. // Хим. технология. 2012. V. 13. № 1. С. 19.
  31. Bai S., Chen L., Chen S. et al. // Sens. Actuators B. 2014. V. 190. P. 760. https://doi.org/10.1016/j.snb.2013.09.032
  32. Li X., He G., Xiao G. et al. // J. Colloid Interface Sci. 2009. V. 333. № 2. P. 465. https://doi.org/10.1016/j.jcis.2009.02.029
  33. Sarkar D., Tikku S., Thapar V. et al. // Colloids Surf. A. 2011. V. 381. № 1–3. P. 123. https://doi.org/10.1016/j.colsurfa.2011.03.041
  34. Liu Y., Lv H., Li S. et al. // Mater. Charact. 2011. V. 62. № 5. P. 509. https://doi.org/10.1016/j.matchar.2011.03.010
  35. Yu X., Xu S., Han Y. et al. // Cryst. Res. Technol. 2012. V. 47. № 7. P. 754. https://doi.org/10.1002/crat.201100635
  36. Pineda-Reyes A.M., Olvera M. de la L. // Mater. Chem. Phys. 2018. V. 203. P. 141. https://doi.org/10.1016/j.matchemphys.2017.09.054
  37. Мурашова Н.М., Полякова А.С., Купцова М.Ю., Токарев П.О. Пат. России № 2799182 // Бюл. изобр. 2023. № 19. С. 361.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependences of zinc concentration in ME on leaching time (model system with ZnO) for ME containing different extractants: 1 - D2EGFC; 2 - caproic acid; 3 - TBP + acetic acid. Leaching temperature 80С.

Жүктеу (68KB)
3. Fig. 2. Dependences of zinc concentration in ME on leaching time (model system with Zn(OH)2) for ME containing different extractants: 1 - D2EGFC; 2 - caproic acid. Leaching temperature 80С.

Жүктеу (53KB)
4. Fig. 3. Dependences of metal recovery rate (curves 1 and 3) and their concentration in ME (curves 2 and 4) on leaching time. Metals: 1 and 2 - zinc, 3 and 4 - iron. Leaching temperature 80С.

Жүктеу (92KB)
5. Fig. 4. Dependences of metal recovery rate (curves 1 and 3) and their concentration in ME (curves 2 and 4) on leaching time. Metals: 1 and 2 - zinc, 3 and 4 - iron. Leaching temperature 50С.

Жүктеу (95KB)
6. Fig. 5. Scheme of synthesis of ZnO NPs during processing of galvanic sludge.

Жүктеу (153KB)
7. Fig. 6. The results of transmission electron microscopy of NPs obtained in ME after leaching (model system with ZnO): microphotograph (a) and size distribution histogram (b).

Жүктеу (105KB)
8. Fig. 7. Diffractogram of the sample of NPs obtained in DOE after leaching (model system with ZnO). Peaks characteristic of ZnO are marked with asterisks.

Жүктеу (84KB)

© Russian Academy of Sciences, 2024