Crystal structures of two polymorphic modifications and thermodynamic parameters of vaporization of copper бис-heptafluoromethyloctandionate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

By evaporation of the solvent from the solutions, crystals of copper bis-heptafluorodimethyloctandionate (Cu (fod)2) were grown. Crystals of monoclinic syngony (I) and from acetonitrile of monoclinic (I) and triclinic (II) syngony are obtained from toluene. Crystallographic data: (I) P21/c a = 13.1863 (6), b = 9.8118 (4), c = 10.6997 (6), β = 113.633 (2) °; (II) Р-1 a = 10.7941(12), b = 11.4759(14), c = 12.5263(13), α = 115.350(4), β = 102.957(4), γ = 100.999(4)°. Packages I and II have the same structure of the molecule. Crystal structures I and II are molecular and consist of discrete molecules Cu (fod)2. For liquid and crystalline (phase I) Cu (fod)2, temperature relationships of saturated vapor pressure in the range 314-393 K were obtained by flow method. Thermal stability of the compound is determined, thermodynamic parameters of sublimation and evaporation are established.

Texto integral

Acesso é fechado

Sobre autores

P. Stabnikov

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS

Autor responsável pela correspondência
Email: stabnik@niic.nsc.ru
Rússia, Novosibirsk, 630090

M. Bespyatov

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: stabnik@niic.nsc.ru
Rússia, Novosibirsk, 630090

I. Korolkov

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: stabnik@niic.nsc.ru
Rússia, Novosibirsk, 630090

A. Sukhikh

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: stabnik@niic.nsc.ru
Rússia, Novosibirsk, 630090

P. Plyusnin

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: stabnik@niic.nsc.ru
Rússia, Novosibirsk, 630090

S. Trubin

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: stabnik@niic.nsc.ru
Rússia, Novosibirsk, 630090

A. Sartakova

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS; Novosibirsk State University

Email: stabnik@niic.nsc.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

S. Sysoev

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: stabnik@niic.nsc.ru
Rússia, Novosibirsk, 630090

Bibliografia

  1. Jones A.C., Hitchman M.L. Chemical Vapor Deposition: Precursors, Processes and Applications. RSC Publishing, 2009. https://doi.org/10.1039/9781847558794
  2. Kodas T., Hampden-Smith M. The Chemistry of Metal CVD. Weinhem: VCH, 1994.
  3. Новикова Г.Я., Моргалюк В.П., Янович Е.А. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1054.
  4. Каткова М.А., Витухновский А.Г., Бочкарев М.Н. // Успехи химии. 2005. Т. 74. № 12. С. 1054.
  5. Бочкарев М.Н., Витухновски А.Г., Каткова М.А. Органические светоизлучающие диоды (OLED). Н. Новгород: ДЕКОМ, 2011.
  6. Кошенскова К.А., Луценко И.А., Нелюбина Ю.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1398.
  7. Трошанин Н.В., Бычкова Т.И., Неклюдов В.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 56.
  8. Мирочник А.Г., Федоренко Е.В., Герасименко Ф.В. // Журн. неорган. химии. 2023. Т. 68. № 6. С. 808.
  9. Журавлев В.Д., Ермакова Л.В., Халиулин Ш.М. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 717.
  10. Виноградов А.С., Павленко В.А., Фрицкий И.О. и др. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1299.
  11. Трофимова О.Ю., Пашанова К.И., Ершова И.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1154.
  12. Малинина У.А., Авдеева В.В., Короленко С.Е. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1208.
  13. Игуменов И.К., Чумаченко Ю.В., Земсков С.В. // Problemy Khimii i Primeneniya -diketonatov Metallov. М.: Наука, 1982.
  14. Стабников П.А. // Журн. общ. химии. 2013. Т. 83. № 10. С. 1713.
  15. Крисюк В.В., Тургамбаева А.Е., Стабников П.А. и др. // Журн. прикл. химии. 2018. Т. 91. № 7. С. 925.
  16. Громилов С.А., Байдина И.А. // Журн. структур. химии. Т. 45. № 6. С. 1076.
  17. Patnaik S., Guru Row T.N., Raghunathan L. et al. // Acta Crystallogr. 1996. V. 52. P. 891. https://doi.org/10.1107/S0108270195012157
  18. DelaRosa M.J., Banger K.K., Higashiya S. et. al. // J. Fluorine Chem. 2003. V. 123. № 1. P. 109. https://doi.org/10.1016/S0022-1139(03)00141-6
  19. Sievers R.E., Connolly J.W., Ross W.D. // J. Cromatorg. Sci. I967. V. 1967. № 5. P. 241. https://doi.org/10.1093/chromsci/5.5.241
  20. Ribeiro da Silva M.A.V., Goncalves J.M. // J. Chem. Thermodyn. 1998. V. 30. № 12. P. 1465. https://doi.org/10.1006/jcht.1998.0412
  21. Vogelson C.T., Edwards C.L., Kobylivker A.N. et al. // J. Chem. Crystallogr. 1998. V. 28. P. 815. https://doi.org/10.1023/A:1021827720374
  22. Суворов А.В. Термодинамическая химия парообразного состояния. Л.: Химия, 1970.
  23. Krisyuk V., Aloui L., Prud’homme N. et al. // Electrochem. Solid-State Lett. 2010. V. 14. № 3. P. D26. https://doi.org/10.1149/1.3526142
  24. Vikulova E.S., Sysoev S.V., Sartakova A.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 2. P. 133. https://doi.org/10.1134/S003602362260232X
  25. Викулова Е.С., Сысоев С.В., Сартакова А.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 2. С. 167.
  26. Sysoev S.V., Sulyaeva V.S., Kosinova M.L. // Russ. J. Inorg. Chem. 2023. V. 68. № 2. https://doi.org/10.1134/S0036023622602173.
  27. Сысоев С.В., Суляева В.С., Косинова М.Л. // Журн. неорган. химии. 2023. Т. 68. № 2. С. 241.
  28. APEX3 (v.2019.1-0), Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
  29. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  30. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  31. Sheldrick G.M. Crystal Structure Refinement with SHELXL // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  32. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Crystallogr. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
  33. Mackenzie C.F., Spackman P.R., Jayatilaka D. et al. // IUCrJ. 2017. V. 4. № 4. P. 575. https://doi.org/10.1107/S205225251700848X

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Supplementary
Baixar (131KB)
3. Fig. 1. Molecular structure (a, b) and packing diagram (c, d) for the triclinic modification of Cu(fod)2 (II).

Baixar (458KB)
4. Fig. 2. Molecular structure (a) and packing diagram (b) for the monoclinic modification Cu(fod)2 (I).

Baixar (169KB)
5. Fig. 3. Hirschfeld surfaces for Cu(FOD)2 molecules of triclinic (a, b) and monoclinic (c) modifications colored using the dnorm (normalized contact distance) parameter in the range -0.1...-1.4.

Baixar (528KB)
6. Fig. 4. DTA/TG for Cu(FOD)2 phase I.

Baixar (97KB)
7. Fig. 5. Temperature dependences of saturated vapor pressure for 1 - evaporation, 2 - sublimation of modification I (flow method), 3 - data [20] for sublimation (effusion method). Solid squares - pressure calculation on the basis of data on the amount of substance condensed in the cold zone, empty squares - on the basis of data on the amount of substance evaporated in the source.

Baixar (63KB)
8. Supplementary
Baixar (131KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024