Synthesis, structure and magnetic properties of Mn-substituted magnetite for magnetorheological materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Iron(II)-manganese(II) ferrite with the composition Mn0.3Fe2.7O4 was synthesized using the coprecipitation method (with various options for subsequent thermal and mechanical treatment of the precipitate). The material was studied by X-ray phase analysis, infrared spectroscopy, scanning electron microscopy and magnetometry. The powder, which was fired in argon at 740°C (8.0 h) and high-energy grinding (1.0 h) at the final stage of synthesis, is a promising functional filler for magnetorheological materials. An oil suspension based on this powder shows a high shear stress value (3500 Pa at 625 mT). In addition, this powder has a high oil absorption capacity, which ensures sedimentation stability of the suspension.

Full Text

Restricted Access

About the authors

Yu. S. Haiduk

Belarusian State University

Author for correspondence.
Email: j_hajduk@list.ru
Belarus, Minsk, 220030

E. V. Korobko

Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus

Email: j_hajduk@list.ru
Belarus, Minsk, 220072

L. V. Radkevich

Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus

Email: j_hajduk@list.ru
Belarus, Minsk, 220072

R. P. Golodok

Belarusian State University

Email: j_hajduk@list.ru
Belarus, Minsk, 220030

A. E. Usenko

Belarusian State University

Email: j_hajduk@list.ru
Belarus, Minsk, 220030

V. V. Pankov

Belarusian State University

Email: j_hajduk@list.ru
Belarus, Minsk, 220030

References

  1. Беляев Е.С., Ермолаев А.И., Титов Е.Ю., Тумаков С.Ф. Магнитореологические жидкости: технологии создания и применение: монография. Нижегород. гос. техн. ун-т им. Р.Е. Алексеева. 2017. 94 с.
  2. Vekas L. // Adv. Sci. Technol. 2008. V. 54. № 1. P. 127. https://doi.org/10.4028/www.scientific.net/ASТ. 54.127
  3. Fang F.F., Choi H.J., Jhonb M.S. // Colloids Surf. A: Physicochem. Eng. Aspects. 2009. V. 351. P. 46.
  4. Chary T.R.G., Allaparthi M., Dusa S. еt al. // Intelligent Manufacturing and Energy Sustainability. ICIMES 2023. Smart Innovation, Systems and Technologies. Singapore: Springer, 2024. V. 372. https://doi.org/10.1007/978-981-99-6774-2_46
  5. Корсакова А.С., Котиков Д.А., Гайдук Ю.С., Паньков В.В. // Конденсированные среды и межфазные границы. 2020. Т. 22. № 4. С. 466. https://doi.org/10.17308/kcmf.2020.22/3076
  6. Гордеев Б.А., Иванов Е.Г., Охулков С.Н. и др. // Вестник машиностроения. 2023. № 6. С. 499. https://doi.org/10.36652/0042-4633-2023-102-6-499-504
  7. Kordonsky W. // Materials Technology. 1993. V. 8. № 11/12. P. 240.
  8. Ghaffari A., Hashemabadi S., Ashtiani M. // J. Intell. Mater. Syst. Struct. 2015. V. 26. № 8. P. 881.
  9. Костров С.А., Тихонов П.А., Музафаров А.М., Крамаренко Е.Ю. // Высокомол. соединения. Сер. А. 2021. Т. 63. С. 198. https://doi.org/10.31857/S230811202103007X
  10. Шульман З.П., Кордонский В.И. Магнитореологический эффект. Минск: Наука и техника, 1982. 184 с.
  11. Гордеев Б.А., Ермолаев А.И., Охулков С.Н. и др. //Вестник машиностроения. 2023. № 3. С. 192. https://doi.org/10.36652/0042-4633-2023-102-3-192-201
  12. Гареев К.Г., Лучинин В.В., Мошников В.А. // Биотехносфера. 2013. Т. 5. № 29. С. 2.
  13. Lu A.-H., Salabas E.L., Schutz F. // Angew. Chem. Int. Ed.2007. V. 46. № 8. P. 1222. https://doi.org/10.1002/anie.200602866
  14. Новопашин С.А., Серебрякова М.А., Хмель С.Я. // Теплофизика и аэромеханика.2015. Т. 22. № 4. С. 411.
  15. Gupta A.K., Naregalkar R.R., Vaidya V. еt al. // Nanomedicine. 2007. V. 2. № 1. P. 23. https://doi.org/10.2217/17435889.2.1.23
  16. Mathew D.S.,Juang R.-S. // Chem. Eng. J. 2007. V. 129. № 1–3. P. 51. https://doi.org/10.1016/j.cej.2006.11.001
  17. Kciuk M., Turczyn R. // J. Achievements Mater. Manufacturing. Eng. 2006. V. 18. № 1–2. P. 127.
  18. Kumar J.S., Paul P.S., Raghunathan G., Alex D.G. // Int. J. Mech. Mater. Eng. 2019. V. 14. № 1. P. 1. https://doi.org/10.1186/s40712-019-0109-2
  19. Chiriac H., Stoian G. // IEEE Transactions on Magnetics. 2009. V. 45. № 10. P. 4049. https://doi.org/10.1109/tmag.2009.2024633
  20. Pu H., Jiang F. // Nanotechnology. 2005. V. 16. № 9. P. 1486. https://doi.org/10.1088/0957-4484/16/9/012
  21. Manuel J.G. de Falco, Bombard A.J.F., Weeks E.R. //Smart Mater. Struct. 2023. V. 32. № 4. P. 045014. https://doi.org/10.1088/1361-665X/acbb47
  22. Вест А. // Химия твердого тела. Теория и приложения. В 2-х ч. / Пер. с англ. М.: Мир, 1988. Ч. 1. 558 с.
  23. Skumryev V., Stoyanov S., Zhang Y. еt al. // Nature. 2003. V. 423. № 6942. P. 850. https://doi.org/10.1038/nature01687
  24. Першина А.Г., Сазонов А.Э., Мильто И.В. // Бюллетень сибирской медицины. 2008. Т. 7. № 2. С. 70. https://doi.org/10.20538/1682-0363-2008-2-70-78

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the saturation magnetization of MxFe3-xO4 on the degree of substitution (x) at 5 and 300 K [5].

Download (100KB)
3. Fig. 2. Diffractograms (a) and IR spectra (b) of powders of Mn0.3Fe2.7O4 composition after drying at 120С (1), firing at 740С (2), firing at 740С and subsequent high-energy grinding for 0.5 (3) and 1.0 h (4).

Download (194KB)
4. Fig. 3. Dependences of saturation magnetization of Mn0.3Fe2.7O4 on magnetic field strength: powder after firing in air for 2.0 h at 300С (a), after firing in argon for 8.0 h at 740С (b).

Download (135KB)
5. Fig. 4. SEM images of Mn0.3Fe2.7O4 powder before (a, b) and after (c) high-energy grinding in a ball disperser.

Download (1MB)
6. Fig. 5. Shear stress dependences of Mn0.3Fe2.7O4-based MRZh-4 (after firing at 740С and grinding for 1.0 h) at different shear rates and given values of magnetic induction (a, b) and flow curves (c).

Download (321KB)

Copyright (c) 2024 Russian Academy of Sciences