Functionalities of Ni–Ti Shape Memory Alloys and Their Efficiency as Event Actuators of Microelectromechanical Systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The functionalities of Ni–Ti alloys subjected to different deformation treatments are studied. A critical stress corresponding to the onset of degradation of the functional properties were determined; it was found that this stress is about twice as low as the yield stress. The efficiency coefficients of virtual thermodynamic machines with a working body made of the investigated materials were calculated and compared with the efficiency of a Carnot engine based on the same materials; the ideality factor has been calculated under the condition of actuating at stresses no higher than critical ones. It has been established that, at the single actuation, the highest ideality factor (9.7%) is characteristic of a material consisting of bars 20 to 5 mm in diameter obtained by warm forging at 350°C. It has been determined that, at discontinuous operation under stresses lower than the critical ones by a factor of 1.2, the ideality factor is 7.4–7.7% for alloys subjected to hot forging or equal channel angular pressing combined with warm forging.

作者简介

V. Kalashnikov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 125009 Russia

V. Koledov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 125009 Russia

V. Shavrov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 125009 Russia

V. Andreev

Baykov Institute of Metallurgy and Materials Science, Russian Academy of Science

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 119334 Russia

A. Nesolenov

Baykov Institute of Metallurgy and Materials Science, Russian Academy of Science

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 119334 Russia

D. Kuchin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Vladimir.kalashnikovS@gmail.com
Moscow, 125009 Russia

R. Karelin

Baykov Institute of Metallurgy and Materials Science, Russian Academy of Science

编辑信件的主要联系方式.
Email: Vladimir.kalashnikovS@gmail.com
Moscow, 119334 Russia

参考

  1. Jani J.M., Leary M., Subic A., Gibson M.A. // Materials and Design. 2014. V. 56. P. 1078. https://doi.org/10.1016/j.matdes.2013.11.084
  2. Otsuka K., Ren X. // Prog. Mater. Sci. 2005. V. 50. P. 511. https://doi.org/10.1016/j.pmatsci.2004.10.001
  3. Калашников В.С., Андреев В.А., Коледов В.В. и др. // Металловедение и термическая обработка металлов. 2019. Т. 770. С. 45.
  4. Калашников В.С., Коледов В.В., Кучин Д.С. и др. // Приборы и техника эксперимента. 2018. № 2. С. 139. https://doi.org/10.7868/S0032816218020155
  5. Калашников В.С., Коледов В.В., Кучин Д.С. и др. // Приборы и техника эксперимента. 2022. Т. 65. № 1. С. 139. https://doi.org/10.31857/S0032816222010049
  6. Smith J.F., Lück R., Jiang Q. et al. // J. Phase Equilibria. 1993. V. 14. № 4. P. 494. https://doi.org/10.1007/BF02671969
  7. Stachiv I., Alarcon E., Lamac M. // Metals. 2021. V. 11. № 3. Article No. 415. https://doi.org/10.3390/met11030415
  8. Wang X., Verlinden B., Humbeeck J.V. // Intermetallics. 2015. V. 62. P. 43. https://doi.org/10.1016/j.intermet.2015.03.006
  9. Калашников В.С., Мусабиров И.И., Коледов В.В. и др. // ЖТФ. 2020. Т. 90. № 4. С. 603. https://doi.org/10.21883/JTF.2020.04.49084.110-19

补充文件

附件文件
动作
1. JATS XML
2.

下载 (949KB)
3.

下载 (162KB)

版权所有 © В.С. Калашников, В.В. Коледов, В.Г. Шавров, В.А. Андреев, А.В. Несоленов, Д.С. Кучин, Р.Д. Карелин, 2023