Analytical Formula for the Relation between the Experimental and Theoretical Parameters of the Tsallis Spectral Line
- Autores: Mendelevich L.V.1, Koksharov Y.A.1,2,3
-
Afiliações:
- Moscow State University, Faculty of Physics
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences
- Shenzhen MSU‒BIT University
- Edição: Volume 68, Nº 5 (2023)
- Páginas: 424-431
- Seção: ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ
- URL: https://kazanmedjournal.ru/0033-8494/article/view/650519
- DOI: https://doi.org/10.31857/S0033849423050145
- EDN: https://elibrary.ru/UIJYHF
- ID: 650519
Citar
Resumo
An exact analytical formula is obtained that relates the experimental and theoretical parameters of the spectral line described by the Tsallis function, which includes the Gaussian, Lorentzian, line shapes intermediate between them, and super-Lorentzian as special cases. The procedure for the numerical calculation of the theoretical parameters of the line shape is studied by the example of electron spin resonance spectra. The effect of complicating experimental factors, including the noise and the analog signal digitization discreteness, on the accuracy of determining the theoretical Tsallian parameters is examined. It is shown that the proposed method for determining the theoretical parameters of the spectral line is not inferior in accuracy to the method for minimizing the root-mean-square error functional. It is predicted that the new approach can be used as an alternative to the available spectral line shape analysis techniques.
Sobre autores
L. Mendelevich
Moscow State University, Faculty of Physics
Email: yak@physics.msu.ru
Moscow, 119234 Russia
Yu. Koksharov
Moscow State University, Faculty of Physics; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Shenzhen MSU‒BIT University
Autor responsável pela correspondência
Email: yak@physics.msu.ru
Moscow, 119234 Russia; Moscow, 125009 Russia; Shenzhen, 518172 China
Bibliografia
- Poole C.P., Farach H.A. // Bull. Magn. Resonance. 1980. V. 1. № 4. P. 162.
- Bertrand P. Electron Paramagnetic Resonance Spectroscopy: Applications. Cham: Springer, 2020.
- Electron Paramagnetic Resonance: a Practitioner’s Toolkit / Eds. by M. Brustolon, G. Giamello. Hoboken Wiley, 2009.
- Stoneham A.M. // J. Phys. D: Appl. Phys. 1972. V. 5. № 3. P. 670.
- Posener D.W. // Australian J. Phys. 1959. V. 12. № 4. P. 184.
- Wertheim G.K., Butler M.A., West K.W., Buchanan D.N.E. // Rev. Sci. Instrum. 1974. V. 45. № 11. P. 1369.
- Maltempo M.M. // J. Magn. Resonance. 1986. V. 68. P. 102.
- Howarth D.F., Weil J.A., Zimpel Z. // J. Magn. Reonance. 2003. V. 161. P. 215.
- Sebby K.B., Walter E.D., Usselman R.J. et al. // J. Phys. Chem. B. 2011. V. 115. № 16. P. 4613.
- Жидомиров Г.М., Лебедев Я.С., Добряков С.Н. и др. Интерпретация сложных спектров ЭПР. М.: Наука, 1975.
- Edmonds A.M., Newton M.E., Martineau P.M. et al. // Phys. Rev. B. 2008. V. 77. № 24. Article No. 245205.
- Кокшаров Ю.А. // ФТТ. 2015. Т. 57. № 10. С. 1960.
- Scott E., Drake M., Reimer J.A. // J. Magn. Resonance. 2016. V. 264. P. 154.
- Стельмах В.Ф., Стригуцкий Л.В. // Журн. прикладной спектроскопии. 1998. Т. 65. № 2. С. 224.
- Mitchell D.G., Quine R.W., Tseinlin M. et al. // J. Phys. Chem. B. 2011. V. 115. № 24. P. 7986.
- Самарский А.А., Гулин А.В. Численные методы: Учеб. пособие для вузов. М.: Наука, 1989.
- Truong G.-W., Anstie J.D., May E.F. et al. // Nature Commun. 2015. V. 6. Article No. 8345. https://doi.org/10.1038/ncomms9345
- Ajoy A., Safvati B., Nazaryan N. et al. // Nature Commun. 2019. V. 10. Article No. 5160. https://doi.org/10.1038/s41467-019-13042-3
- Ивичева С.Е., Каргин Ю.Ф., Овченков Е.А. и др. // ФТТ. 2011. Т. 53. № 6. С. 1053.
- Гуляев Ю.В., Черепенин В.А., Вдовин В.А. и др. // РЭ. 2015. Т. 60. № 10. С. 1051. https://doi.org/10.7868/S0033849415100034
Arquivos suplementares
