Analytical Formula for the Relation between the Experimental and Theoretical Parameters of the Tsallis Spectral Line

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An exact analytical formula is obtained that relates the experimental and theoretical parameters of the spectral line described by the Tsallis function, which includes the Gaussian, Lorentzian, line shapes intermediate between them, and super-Lorentzian as special cases. The procedure for the numerical calculation of the theoretical parameters of the line shape is studied by the example of electron spin resonance spectra. The effect of complicating experimental factors, including the noise and the analog signal digitization discreteness, on the accuracy of determining the theoretical Tsallian parameters is examined. It is shown that the proposed method for determining the theoretical parameters of the spectral line is not inferior in accuracy to the method for minimizing the root-mean-square error functional. It is predicted that the new approach can be used as an alternative to the available spectral line shape analysis techniques.

Sobre autores

L. Mendelevich

Moscow State University, Faculty of Physics

Email: yak@physics.msu.ru
Moscow, 119234 Russia

Yu. Koksharov

Moscow State University, Faculty of Physics; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences; Shenzhen MSU‒BIT University

Autor responsável pela correspondência
Email: yak@physics.msu.ru
Moscow, 119234 Russia; Moscow, 125009 Russia; Shenzhen, 518172 China

Bibliografia

  1. Poole C.P., Farach H.A. // Bull. Magn. Resonance. 1980. V. 1. № 4. P. 162.
  2. Bertrand P. Electron Paramagnetic Resonance Spectroscopy: Applications. Cham: Springer, 2020.
  3. Electron Paramagnetic Resonance: a Practitioner’s Toolkit / Eds. by M. Brustolon, G. Giamello. Hoboken Wiley, 2009.
  4. Stoneham A.M. // J. Phys. D: Appl. Phys. 1972. V. 5. № 3. P. 670.
  5. Posener D.W. // Australian J. Phys. 1959. V. 12. № 4. P. 184.
  6. Wertheim G.K., Butler M.A., West K.W., Buchanan D.N.E. // Rev. Sci. Instrum. 1974. V. 45. № 11. P. 1369.
  7. Maltempo M.M. // J. Magn. Resonance. 1986. V. 68. P. 102.
  8. Howarth D.F., Weil J.A., Zimpel Z. // J. Magn. Reonance. 2003. V. 161. P. 215.
  9. Sebby K.B., Walter E.D., Usselman R.J. et al. // J. Phys. Chem. B. 2011. V. 115. № 16. P. 4613.
  10. Жидомиров Г.М., Лебедев Я.С., Добряков С.Н. и др. Интерпретация сложных спектров ЭПР. М.: Наука, 1975.
  11. Edmonds A.M., Newton M.E., Martineau P.M. et al. // Phys. Rev. B. 2008. V. 77. № 24. Article No. 245205.
  12. Кокшаров Ю.А. // ФТТ. 2015. Т. 57. № 10. С. 1960.
  13. Scott E., Drake M., Reimer J.A. // J. Magn. Resonance. 2016. V. 264. P. 154.
  14. Стельмах В.Ф., Стригуцкий Л.В. // Журн. прикладной спектроскопии. 1998. Т. 65. № 2. С. 224.
  15. Mitchell D.G., Quine R.W., Tseinlin M. et al. // J. Phys. Chem. B. 2011. V. 115. № 24. P. 7986.
  16. Самарский А.А., Гулин А.В. Численные методы: Учеб. пособие для вузов. М.: Наука, 1989.
  17. Truong G.-W., Anstie J.D., May E.F. et al. // Nature Commun. 2015. V. 6. Article No. 8345. https://doi.org/10.1038/ncomms9345
  18. Ajoy A., Safvati B., Nazaryan N. et al. // Nature Commun. 2019. V. 10. Article No. 5160. https://doi.org/10.1038/s41467-019-13042-3
  19. Ивичева С.Е., Каргин Ю.Ф., Овченков Е.А. и др. // ФТТ. 2011. Т. 53. № 6. С. 1053.
  20. Гуляев Ю.В., Черепенин В.А., Вдовин В.А. и др. // РЭ. 2015. Т. 60. № 10. С. 1051. https://doi.org/10.7868/S0033849415100034

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (173KB)
3.

Baixar (129KB)
4.

Baixar (43KB)
5.

Baixar (167KB)
6.

Baixar (121KB)

Declaração de direitos autorais © Л.В. Менделевич, Ю.А. Кокшаров, 2023